Quantification of Errors Generated by Uncertain Data in a Linear Boundary Value Problem Using Neural Networks
Halonen, V., & Pölönen, I. (2023). Quantification of Errors Generated by Uncertain Data in a Linear Boundary Value Problem Using Neural Networks. SIAM/ASA Journal on Uncertainty Quantification, 11(4), 1258-1277. https://doi.org/10.1137/22M1538855
Julkaistu sarjassa
SIAM/ASA Journal on Uncertainty QuantificationPäivämäärä
2023Oppiaine
Computing, Information Technology and MathematicsTietotekniikkaLaskennallinen tiedeComputing, Information Technology and MathematicsMathematical Information TechnologyComputational ScienceTekijänoikeudet
© 2023 the Authors
Quantifying errors caused by indeterminacy in data is currently computationally expensive even in relatively simple PDE problems. Efficient methods could prove very useful in, for example, scientific experiments done with simulations. In this paper, we create and test neural networks which quantify uncertainty errors in the case of a linear one-dimensional boundary value problem. Training and testing data is generated numerically. We created three training datasets and three testing datasets and trained four neural networks with differing architectures. The performance of the neural networks is compared to known analytical bounds of errors caused by uncertain data. We find that the trained neural networks accurately approximate the exact error quantity in almost all cases and the neural network outputs are always between the analytical upper and lower bounds. The results of this paper show that after a suitable dataset is used for training even a relatively compact neural network can successfully predict quantitative effects generated by uncertain data. If these methods can be extended to more difficult PDE problems they could potentially have a multitude of real-world applications.
...
Julkaisija
Society for Industrial & Applied Mathematics (SIAM)ISSN Hae Julkaisufoorumista
2166-2525Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/194836033
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Taxonomy-Informed Neural Networks for Smart Manufacturing
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2024)A neural network (NN) is known to be an efficient and learnable tool supporting decision-making processes particularly in Industry 4.0. The majority of NNs are data-driven and, therefore, depend on training data quantity ... -
Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network
Salmi, Pauliina; Calderini, Marco; Pääkkönen, Salli; Taipale, Sami; Pölönen, Ilkka (Springer Science and Business Media LLC, 2022)Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the ... -
Node co-activations as a means of error detection : Towards fault-tolerant neural networks
Myllyaho, Lalli; Nurminen, Jukka K.; Mikkonen, Tommi (Elsevier, 2022)Context: Machine learning has proved an efficient tool, but the systems need tools to mitigate risks during runtime. One approach is fault tolerance: detecting and handling errors before they cause harm. Objective: This ... -
DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification
Prezja, Fabi; Paloneva, Juha; Pölönen, Ilkka; Niinimäki, Esko; Äyrämö, Sami (Nature Publishing Group, 2022)Recent developments in deep learning have impacted medical science. However, new privacy issues and regulatory frameworks have hindered medical data sharing and collection. Deep learning is a very data-intensive process ... -
Causality-Aware Convolutional Neural Networks for Advanced Image Classification and Generation
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2023)Smart manufacturing uses emerging deep learning models, and particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), for different industrial diagnostics tasks, e.g., classification, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.