Coarea inequality for monotone functions on metric surfaces
Esmayli, B., Ikonen, T., & Rajala, K. (2023). Coarea inequality for monotone functions on metric surfaces. Transactions of the American Mathematical Society, 376, 7377-7406. https://doi.org/10.1090/tran/8998
Julkaistu sarjassa
Transactions of the American Mathematical SocietyPäivämäärä
2023Oppiaine
Analyysin ja dynamiikan tutkimuksen huippuyksikköMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)MathematicsTekijänoikeudet
© Authors 2023
Julkaisija
American Mathematical Society (AMS)ISSN Hae Julkaisufoorumista
0002-9947Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/184531349
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This research was supported by the Academy of Finland, project number 308659. The second named author was also supported by the Vilho, Yrjö and Kalle Väisälä Foundation.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The Hajłasz Capacity Density Condition is Self-improving
Canto, Javier; Vähäkangas, Antti V. (Springer Science and Business Media LLC, 2022)We prove a self-improvement property of a capacity density condition for a nonlocal Hajłasz gradient in complete geodesic spaces with a doubling measure. The proof relates the capacity density condition with boundary ... -
Self-improvement of pointwise Hardy inequality
Eriksson-Bique, Sylvester; Vähäkangas, Antti V. (American Mathematical Society, 2019)We prove the self-improvement of a pointwise p-Hardy inequality. The proof relies on maximal function techniques and a characterization of the inequality by curves. -
On a class of singular measures satisfying a strong annular decay condition
Arroyo, Ángel; Llorente, José G. (American Mathematical Society, 2019)A metric measure space (X, d, t) is said to satisfy the strong annular decay condition if there is a constant C > 0 such that for each x E X and all 0 < r < R. If do., is the distance induced by the co -norm in RN, we ... -
Quasispheres and metric doubling measures
Lohvansuu, Atte; Rajala, Kai; Rasimus, Martti (American Mathematical Society, 2018)Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere X is a quasisphere if and only if X is linearly locally connected and carries a weak metric doubling measure, ... -
Quasiconformal Jordan Domains
Ikonen, Toni (Walter de Gruyter GmbH, 2021)We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y,dY). We say that a metric space (Y,dY) is a quasiconformal Jordan domain if the completion Y of (Y,dY) has finite Hausdor 2-measure, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.