Näytä suppeat kuvailutiedot

dc.contributor.authorJin, Shan
dc.contributor.authorXu, Hongming
dc.contributor.authorDong, Yue
dc.contributor.authorHao, Xinyu
dc.contributor.authorQin, Fengying
dc.contributor.authorWang, Ranran
dc.contributor.authorCong, Fengyu
dc.date.accessioned2024-01-08T12:05:29Z
dc.date.available2024-01-08T12:05:29Z
dc.date.issued2023
dc.identifier.citationJin, S., Xu, H., Dong, Y., Hao, X., Qin, F., Wang, R., & Cong, F. (2023). Multiple Instance Learning for Lymph Node Metastasis Prediction from Cervical Cancer MRI. In <i>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)</i>. IEEE. International Symposium on Biomedical Imaging. <a href="https://doi.org/10.1109/isbi53787.2023.10230666" target="_blank">https://doi.org/10.1109/isbi53787.2023.10230666</a>
dc.identifier.otherCONVID_184618753
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/92581
dc.description.abstractLymph node metastasis (LNM) is an important prognostic factor for recurrence and overall survival of cancer patients. The current LNM diagnosis is based on histopathologic examination after surgical lymphadenectomy, but an accurate and noninvasive method for LNM diagnosis is essential in selecting reasonable surgical operations and treatment plans. This paper presents an attention based multiple instance learning (MIL) model to diagnose LNM from cervical cancer multimodal MRI. The proposed MIL model adopts convolutional neural network (CNN) to extract features from multimodal MRI and attention-based pooling to make patient-level LNM status prediction. By incorporating the MIL and attention mechanism, the top rank MRI slice with informative regions in each LNM positive patient is visualized to provide the interpretability for LNM diagnosis. Experiments evaluated on a cohort of 241 cervical cancer patients show improvements in LNM status prediction compared with existing comparative models, which indicates the advantages of our designed model.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartof2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)
dc.relation.ispartofseriesInternational Symposium on Biomedical Imaging
dc.rightsIn Copyright
dc.subject.othermultiple instance learning
dc.subject.otherdeep learning
dc.subject.otherlymph node metastasis
dc.subject.othercervical cancer
dc.titleMultiple Instance Learning for Lymph Node Metastasis Prediction from Cervical Cancer MRI
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202401081083
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-6654-7359-0
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.relation.issn1945-7928
dc.type.versionacceptedVersion
dc.rights.copyright© 2023, IEEE
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceIEEE International Symposium on Biomedical Imaging
dc.subject.ysomagneettikuvaus
dc.subject.ysodiagnostiikka
dc.subject.ysokohdunkaulan syöpä
dc.subject.ysosyväoppiminen
dc.subject.ysosyöpätaudit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12131
jyx.subject.urihttp://www.yso.fi/onto/yso/p416
jyx.subject.urihttp://www.yso.fi/onto/yso/p17173
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p678
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/isbi53787.2023.10230666
jyx.fundinginformationThis work was supported by the National Key Research and Development Program of China (2022YFC3902100) and the Fundamental Research Funds for the Central Universities (DUT21YG135).
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright