Multiple Instance Learning for Lymph Node Metastasis Prediction from Cervical Cancer MRI
Jin, S., Xu, H., Dong, Y., Hao, X., Qin, F., Wang, R., & Cong, F. (2023). Multiple Instance Learning for Lymph Node Metastasis Prediction from Cervical Cancer MRI. In 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI). IEEE. International Symposium on Biomedical Imaging. https://doi.org/10.1109/isbi53787.2023.10230666
Julkaistu sarjassa
International Symposium on Biomedical ImagingTekijät
Päivämäärä
2023Oppiaine
Secure Communications Engineering and Signal ProcessingTekniikkaTietotekniikkaSecure Communications Engineering and Signal ProcessingEngineeringMathematical Information TechnologyPääsyrajoitukset
Embargo päättyy: 2025-04-18Pyydä artikkeli tutkijalta
Tekijänoikeudet
© 2023, IEEE
Lymph node metastasis (LNM) is an important prognostic factor for recurrence and overall survival of cancer patients. The current LNM diagnosis is based on histopathologic examination after surgical lymphadenectomy, but an accurate and noninvasive method for LNM diagnosis is essential in selecting reasonable surgical operations and treatment plans. This paper presents an attention based multiple instance learning (MIL) model to diagnose LNM from cervical cancer multimodal MRI. The proposed MIL model adopts convolutional neural network (CNN) to extract features from multimodal MRI and attention-based pooling to make patient-level LNM status prediction. By incorporating the MIL and attention mechanism, the top rank MRI slice with informative regions in each LNM positive patient is visualized to provide the interpretability for LNM diagnosis. Experiments evaluated on a cohort of 241 cervical cancer patients show improvements in LNM status prediction compared with existing comparative models, which indicates the advantages of our designed model.
...
Julkaisija
IEEEEmojulkaisun ISBN
978-1-6654-7359-0Konferenssi
IEEE International Symposium on Biomedical ImagingKuuluu julkaisuun
2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)ISSN Hae Julkaisufoorumista
1945-7928Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/184618753
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work was supported by the National Key Research and Development Program of China (2022YFC3902100) and the Fundamental Research Funds for the Central Universities (DUT21YG135).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Ranking attention multiple instance learning for lymph node metastasis prediction on multicenter cervical cancer MRI
Jin, Shan; Xu, Hongming; Dong, Yue; Wang, Xiaofeng; Hao, Xinyu; Qin, Fengying; Wang, Ranran; Cong, Fengyu (Wiley, 2024)Purpose In the current clinical diagnostic process, the gold standard for lymph node metastasis (LNM) diagnosis is histopathological examination following surgical lymphadenectomy. Developing a non-invasive and preoperative ... -
Robustness, Stability, and Fidelity of Explanations for a Deep Skin Cancer Classification Model
Saarela, Mirka; Geogieva, Lilia (MDPI AG, 2022)Skin cancer is one of the most prevalent of all cancers. Because of its being widespread and externally observable, there is a potential that machine learning models integrated into artificial intelligence systems will ... -
MIHIC: a multiplex IHC histopathological image classification dataset for lung cancer immune microenvironment quantification
Wang, Ranran; Qiu, Yusong; Wang, Tong; Wang, Mingkang; Jin, Shan; Cong, Fengyu; Zhang, Yong; Xu, Hongming (Frontiers Media, 2024)Background: Immunohistochemistry (IHC) is a widely used laboratory technique for cancer diagnosis, which selectively binds specific antibodies to target proteins in tissue samples and then makes the bound proteins visible ... -
One-Pixel Attack Deceives Computer-Assisted Diagnosis of Cancer
Korpihalkola, Joni; Sipola, Tuomo; Puuska, Samir; Kokkonen, Tero (ACM, 2021)Computer vision and machine learning can be used to automate various tasks in cancer diagnostic and detection. If an attacker can manipulate the automated processing, the results can be devastating and in the worst case ... -
Lack of association between screening interval and cancer stage in Lynch syndrome may be accounted for by over-diagnosis; a prospective Lynch syndrome database report
Seppälä, Toni T.; Ahadova, Aysel; Dominguez-Valentin, Mev; Macrae, Finlay; Evans, D. Gareth; Therkildsen, Christina; Sampson, Julian; Scott, Rodney; Burn, John; Möslein, Gabriela; Bernstein, Inge; Holinski-Feder, Elke; Pylvänäinen, Kirsi; Renkonen-Sinisalo, Laura; Lepistö, Anna; Lautrup, Charlotte Kvist; Lindblom, Annika; Plazzer, John-Paul; Winship, Ingrid; Tjandra, Douglas; Katz, Lior H.; Aretz, Stefan; Hüneburg, Robert; Holzapfel, Stefanie; Heinimann, Karl; Valle, Adriana Della; Neffa, Florencia; Gluck, Nathan; Cappel, Wouter H. de Vos tot Nederveen; Vasen, Hans; Morak, Monika; Steinke-Lange, Verena; Engel, Christoph; Rahner, Nils; Schmiegel, Wolff; Vangala, Deepak; Thomas, Huw; Green, Kate; Lalloo, Fiona; Crosbie, Emma J.; Hill, James; Capella, Gabriel; Pineda, Marta; Navarro, Matilde; Blanco, Ignacio; Broeke, Sanne ten; Nielsen, Maartje; Ljungmann, Ken; Nakken, Sigve; Lindor, Noralane; Frayling, Ian; Hovig, Eivind; Sunde, Lone; Kloor, Matthias; Mecklin, Jukka-Pekka; Kalager, Mette; Møller, Pål (BioMed Central Ltd., 2019)Background Recent epidemiological evidence shows that colorectal cancer (CRC) continues to occur in carriers of pathogenic mismatch repair (path_MMR) variants despite frequent colonoscopy surveillance in expert centres. ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.