dc.contributor.author | Jin, Shan | |
dc.contributor.author | Xu, Hongming | |
dc.contributor.author | Dong, Yue | |
dc.contributor.author | Hao, Xinyu | |
dc.contributor.author | Qin, Fengying | |
dc.contributor.author | Wang, Ranran | |
dc.contributor.author | Cong, Fengyu | |
dc.date.accessioned | 2024-01-08T12:05:29Z | |
dc.date.available | 2024-01-08T12:05:29Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Jin, S., Xu, H., Dong, Y., Hao, X., Qin, F., Wang, R., & Cong, F. (2023). Multiple Instance Learning for Lymph Node Metastasis Prediction from Cervical Cancer MRI. In <i>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)</i>. IEEE. International Symposium on Biomedical Imaging. <a href="https://doi.org/10.1109/isbi53787.2023.10230666" target="_blank">https://doi.org/10.1109/isbi53787.2023.10230666</a> | |
dc.identifier.other | CONVID_184618753 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/92581 | |
dc.description.abstract | Lymph node metastasis (LNM) is an important prognostic factor for recurrence and overall survival of cancer patients. The current LNM diagnosis is based on histopathologic examination after surgical lymphadenectomy, but an accurate and noninvasive method for LNM diagnosis is essential in selecting reasonable surgical operations and treatment plans. This paper presents an attention based multiple instance learning (MIL) model to diagnose LNM from cervical cancer multimodal MRI. The proposed MIL model adopts convolutional neural network (CNN) to extract features from multimodal MRI and attention-based pooling to make patient-level LNM status prediction. By incorporating the MIL and attention mechanism, the top rank MRI slice with informative regions in each LNM positive patient is visualized to provide the interpretability for LNM diagnosis. Experiments evaluated on a cohort of 241 cervical cancer patients show improvements in LNM status prediction compared with existing comparative models, which indicates the advantages of our designed model. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI) | |
dc.relation.ispartofseries | International Symposium on Biomedical Imaging | |
dc.rights | In Copyright | |
dc.subject.other | multiple instance learning | |
dc.subject.other | deep learning | |
dc.subject.other | lymph node metastasis | |
dc.subject.other | cervical cancer | |
dc.title | Multiple Instance Learning for Lymph Node Metastasis Prediction from Cervical Cancer MRI | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-202401081083 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Secure Communications Engineering and Signal Processing | fi |
dc.contributor.oppiaine | Tekniikka | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Secure Communications Engineering and Signal Processing | en |
dc.contributor.oppiaine | Engineering | en |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-1-6654-7359-0 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1945-7928 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2023, IEEE | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | IEEE International Symposium on Biomedical Imaging | |
dc.subject.yso | magneettikuvaus | |
dc.subject.yso | diagnostiikka | |
dc.subject.yso | kohdunkaulan syöpä | |
dc.subject.yso | syväoppiminen | |
dc.subject.yso | syöpätaudit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12131 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p416 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17173 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39324 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p678 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1109/isbi53787.2023.10230666 | |
jyx.fundinginformation | This work was supported by the National Key Research and Development Program of China (2022YFC3902100) and the Fundamental Research Funds for the Central Universities (DUT21YG135). | |
dc.type.okm | A4 | |