Näytä suppeat kuvailutiedot

dc.contributor.authorSalmi, Pauliina
dc.contributor.authorPölönen, Ilkka
dc.contributor.authorBeckmann, Daniel Atton
dc.contributor.authorCalderini, Marco L.
dc.contributor.authorMay, Linda
dc.contributor.authorOlszewska, Justyna
dc.contributor.authorPerozzi, Laura
dc.contributor.authorPääkkönen, Salli
dc.contributor.authorTaipale, Sami
dc.contributor.authorHunter, Peter
dc.date.accessioned2023-11-08T08:31:54Z
dc.date.available2023-11-08T08:31:54Z
dc.date.issued2024
dc.identifier.citationSalmi, P., Pölönen, I., Beckmann, D. A., Calderini, M. L., May, L., Olszewska, J., Perozzi, L., Pääkkönen, S., Taipale, S., & Hunter, P. (2024). Resolving phytoplankton pigments from spectral images using convolutional neural networks. <i>Limnology and Oceanography: Methods</i>, <i>22</i>(1), 1-13. <a href="https://doi.org/10.1002/lom3.10588" target="_blank">https://doi.org/10.1002/lom3.10588</a>
dc.identifier.otherCONVID_194341151
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/91808
dc.description.abstractMotivated by the need for rapid and robust monitoring of phytoplankton in inland waters, this article introduces a protocol based on a mobile spectral imager for assessing phytoplankton pigments from water samples. The protocol includes (1) sample concentrating; (2) spectral imaging; and (3) convolutional neural networks (CNNs) to resolve concentrations of chlorophyll a (Chl a), carotenoids, and phycocyanin. The protocol was demonstrated with samples from 20 lakes across Scotland, with special emphasis on Loch Leven where blooms of cyanobacteria are frequent. In parallel, samples were prepared for reference observations of Chl a and carotenoids by high-performance liquid chromatography and of phycocyanin by spectrophotometry. Robustness of the CNNs were investigated by excluding each lake from model trainings one at a time and using the excluded data as independent test data. For Loch Leven, median absolute percentage difference (MAPD) was 15% for Chl a and 36% for carotenoids. MAPD in estimated phycocyanin concentration was high (102%); however, the system was able to indicate the possibility of a cyanobacteria bloom. In the leave-one-out tests with the other lakes, MAPD was 26% for Chl a, 27% for carotenoids, and 75% for phycocyanin. The higher error for phycocyanin was likely due to variation in the data distribution and reference observations. It was concluded that this protocol could support phytoplankton monitoring by using Chl a and carotenoids as proxies for biomass. Greater focus on the distribution and volume of the training data would improve the phycocyanin estimates.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJohn Wiley & Sons
dc.relation.ispartofseriesLimnology and Oceanography: Methods
dc.rightsCC BY 4.0
dc.titleResolving phytoplankton pigments from spectral images using convolutional neural networks
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202311087848
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineResurssiviisausyhteisöfi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineAkvaattiset tieteetfi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineSchool of Resource Wisdomen
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.contributor.oppiaineAquatic Sciencesen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1-13
dc.relation.issn1541-5856
dc.relation.numberinseries1
dc.relation.volume22
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 The Authors. Limnology and Oceanography: Methods published by Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber321780
dc.subject.ysokarotenoidit
dc.subject.ysojärvet
dc.subject.ysosisävedet
dc.subject.ysoplankton
dc.subject.ysovedenlaatu
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p6692
jyx.subject.urihttp://www.yso.fi/onto/yso/p9374
jyx.subject.urihttp://www.yso.fi/onto/yso/p3270
jyx.subject.urihttp://www.yso.fi/onto/yso/p3053
jyx.subject.urihttp://www.yso.fi/onto/yso/p15738
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1002/lom3.10588
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundinginformationThe work of Pauliina Salmi was funded by the Academy of Finland, grant number 321780. This research was supported by European Union’s Horizon 2020 research and innovation program under grant agreement no. 776480 (Multiscale Observation Networks for Optical monitoring of Coastal waters, Lakes and Estuaries). Peter Hunter was supported by funding from the Stirling and Clackmannanshire City Region Deal. Daniel Beckmann was funded by the Scottish Government’s Hydro Nation Scholars Program. Sampling at Loch Leven was supported by Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE program delivering National Capability.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0