Resolving phytoplankton pigments from spectral images using convolutional neural networks
Salmi, P., Pölönen, I., Beckmann, D. A., Calderini, M. L., May, L., Olszewska, J., Perozzi, L., Pääkkönen, S., Taipale, S., & Hunter, P. (2024). Resolving phytoplankton pigments from spectral images using convolutional neural networks. Limnology and Oceanography: Methods, 22(1), 1-13. https://doi.org/10.1002/lom3.10588
Published in
Limnology and Oceanography: MethodsAuthors
Date
2024Discipline
TietotekniikkaResurssiviisausyhteisöLaskennallinen tiedeComputing, Information Technology and MathematicsAkvaattiset tieteetMathematical Information TechnologySchool of Resource WisdomComputational ScienceComputing, Information Technology and MathematicsAquatic SciencesCopyright
© 2023 The Authors. Limnology and Oceanography: Methods published by
Wiley Periodicals LLC on behalf of Association for the Sciences of
Limnology and Oceanography
Motivated by the need for rapid and robust monitoring of phytoplankton in inland waters, this article introduces a protocol based on a mobile spectral imager for assessing phytoplankton pigments from water samples. The protocol includes (1) sample concentrating; (2) spectral imaging; and (3) convolutional neural networks (CNNs) to resolve concentrations of chlorophyll a (Chl a), carotenoids, and phycocyanin. The protocol was demonstrated with samples from 20 lakes across Scotland, with special emphasis on Loch Leven where blooms of cyanobacteria are frequent. In parallel, samples were prepared for reference observations of Chl a and carotenoids by high-performance liquid chromatography and of phycocyanin by spectrophotometry. Robustness of the CNNs were investigated by excluding each lake from model trainings one at a time and using the excluded data as independent test data. For Loch Leven, median absolute percentage difference (MAPD) was 15% for Chl a and 36% for carotenoids. MAPD in estimated phycocyanin concentration was high (102%); however, the system was able to indicate the possibility of a cyanobacteria bloom. In the leave-one-out tests with the other lakes, MAPD was 26% for Chl a, 27% for carotenoids, and 75% for phycocyanin. The higher error for phycocyanin was likely due to variation in the data distribution and reference observations. It was concluded that this protocol could support phytoplankton monitoring by using Chl a and carotenoids as proxies for biomass. Greater focus on the distribution and volume of the training data would improve the phycocyanin estimates.
...
Publisher
John Wiley & SonsISSN Search the Publication Forum
1541-5856Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/194341151
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Postdoctoral Researcher, AoFAdditional information about funding
The work of Pauliina Salmi was funded by the Academy of Finland, grant number 321780. This research was supported by European Union’s Horizon 2020 research and innovation program under grant agreement no. 776480 (Multiscale Observation Networks for Optical monitoring of Coastal waters, Lakes and Estuaries). Peter Hunter was supported by funding from the Stirling and Clackmannanshire City Region Deal. Daniel Beckmann was funded by the Scottish Government’s Hydro Nation Scholars Program. Sampling at Loch Leven was supported by Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE program delivering National Capability. ...License
Related items
Showing items with similar title or keywords.
-
Integrating pigment and fatty acid profiles for enhanced estimation of seston community composition
Litmanen, Jaakko J.; Perälä, Tommi; Vuorio, Kristiina; Asikainen, Harri; Taipale Sami, J. (Wiley, 2024)Climate change, nutrition pollution, and land use alterations influence the primary production of lakes. While light-microscopy counting remains the standard for estimating phytoplankton community composition, its expense ... -
Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours : A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and Convolutional Neural Networks
Lindholm, Vivian; Raita-Hakola, Anna-Maria; Annala, Leevi; Salmivuori, Mari; Jeskanen, Leila; Saari, Heikki; Koskenmies, Sari; Pitkänen, Sari; Pölönen, Ilkka; Isoherranen, Kirsi; Ranki, Annamari (MDPI AG, 2022)Several optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. ... -
A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins
Mantzouki, Evanthia; Campbell, James; van Loon, Emiel; Visser, Petra; Konstantinou, Iosif; Antoniou, Maria; Giuliani, Grégory; Machado-Vieira, Danielle; Oliveira, Alinne Gurjão de; Maronić, Dubravka Špoljarić; Stević, Filip; Pfeiffer, Tanja Žuna; Vucelić, Itana Bokan; Žutinić, Petar; Udovič, Marija Gligora; Plenković-Moraj, Anđelka; Tsiarta, Nikoletta; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Kangro, Kersti; Häggqvist, Kerstin; Salmi, Pauliina; Arvola, Lauri; Fastner, Jutta; Straile, Dietmar; Rothhaupt, Karl-Otto; Fonvielle, Jeremy; Grossart, Hans-Peter; Avagianos, Christos; Kaloudis, Triantafyllos; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Gkelis, Spyros; Panou, Manthos; McCarthy, Valerie; Perello, Victor C.; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Koreivienė, Judita; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Haande, Sigrid; Skjelbred, Birger; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Nawrocka, Lidia; Kobos, Justyna; Mazur-Marzec, Hanna; Alcaraz-Párraga, Pablo; Wilk-Woźniak, Elżbieta; Krztoń, Wojciech; Walusiak, Edward; Gagala, Ilona; Mankiewicz-Boczek, Joana; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Napiórkowska-Krzebietke, Agnieszka; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechata, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; Madrecka, Beata; Kostrzewska-Szlakowska, Iwona; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Jasser, Iwona; Antão-Geraldes, Ana M.; Leira, Manel; Hernández, Armand; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Raposeiro, Pedro M.; Gonçalves, Vítor; Aleksovski, Boris; Krstić, Svetislav; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Remec-Rekar, Spela; Elersek, Tina; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Úbeda, Bárbara; Gálvez, José Ángel; Marcé, Rafael; Catalán, Núria; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Cillero-Castro, Carmen; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Özen, Arda; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Verspagen, Jolanda M. H.; Domis, Lisette N. de Senerpont; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Lürling, Miquel; Maliaka, Valentini; Faassen, Elisabeth J.; Latour, Delphine; Carey, Cayelan C.; Paerl, Hans W.; Torokne, Andrea; Karan, Tünay; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Çelik, Kemal; Özhan, Koray; Karakaya, Nusret; et al.; Yilmaz, Mete; Maraşlıoğlu, Faruk; Fakioglu, Özden; Soylu, Elif Neyran; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Alp, Mehmet Tahir; Özkan, Korhan; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Richardson, Jessica; Edwards, Christine; Bergkemper, Victoria; O'Leary, Sarah; Beirne, Eilish; Cromie, Hannah; Ibelings, Bastiaan W. (Nature Publishing Group, 2018)Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ... -
Effects of mechanical mixing on lake water quality, with special emphasis on under-ice phytoplankton
Salmi, Pauliina (University of Jyväskylä, 2015) -
Using Aerial Platforms in Predicting Water Quality Parameters from Hyperspectral Imaging Data with Deep Neural Networks
Hakala, Taina; Pölönen, Ilkka; Honkavaara, Eija; Näsi, Roope; Hakala, Teemu; Lindfors, Antti (Springer, 2020)In near future it is assumable that automated unmanned aerial platforms are coming more common. There are visions that transportation of different goods would be done with large planes, which can handle over 1000 kg payloads. ...