Show simple item record

dc.contributor.authorLe Donne, Enrico
dc.contributor.authorMorbidelli, Daniele
dc.contributor.authorRigot, Séverine
dc.date.accessioned2023-09-20T10:21:52Z
dc.date.available2023-09-20T10:21:52Z
dc.date.issued2023
dc.identifier.citationLe Donne, E., Morbidelli, D., & Rigot, S. (2023). Horizontally Affine Functions on Step-2 Carnot Algebras. <i>Journal of Geometric Analysis</i>, <i>33</i>(11), Article 359. <a href="https://doi.org/10.1007/s12220-023-01360-4" target="_blank">https://doi.org/10.1007/s12220-023-01360-4</a>
dc.identifier.otherCONVID_184914332
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/89200
dc.description.abstractIn this paper, we introduce the notion of horizontally affine, h-affine in short, function and give a complete description of such functions on step-2 Carnot algebras. We show that the vector space of h-affine functions on the free step-2 rank-n Carnot algebra is isomorphic to the exterior algebra of Rn. Using that every Carnot algebra can be written as a quotient of a free Carnot algebra, we shall deduce from the free case a description of h-affine functions on arbitrary step-2 Carnot algebras, together with several characterizations of those step-2 Carnot algebras where h-affine functions are affine in the usual sense of vector spaces. Our interest for h-affine functions stems from their relationship with a class of sets called precisely monotone, recently introduced in the literature, as well as from their relationship with minimal hypersurfaces.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesJournal of Geometric Analysis
dc.rightsCC BY 4.0
dc.subject.otherstep-2 Carnot groups
dc.subject.otherstep-2 Carnot algebras
dc.subject.otherhorizontally affine functions
dc.titleHorizontally Affine Functions on Step-2 Carnot Algebras
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202309205209
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineGeometrinen analyysi ja matemaattinen fysiikkafi
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineAnalyysin ja dynamiikan tutkimuksen huippuyksikköfi
dc.contributor.oppiaineGeometric Analysis and Mathematical Physicsen
dc.contributor.oppiaineMathematicsen
dc.contributor.oppiaineAnalysis and Dynamics Research (Centre of Excellence)en
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1050-6926
dc.relation.numberinseries11
dc.relation.volume33
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2023
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysolineaarialgebra
dc.subject.ysodifferentiaaligeometria
dc.subject.ysoryhmäteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p16733
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
jyx.subject.urihttp://www.yso.fi/onto/yso/p12497
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s12220-023-01360-4
jyx.fundinginformationOpen Access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0