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Abstract
In this paper, we introduce the notion of horizontally affine, h-affine in short, function
and give a complete description of such functions on step-2 Carnot algebras. We show
that the vector space of h-affine functions on the free step-2 rank-n Carnot algebra
is isomorphic to the exterior algebra of R

n . Using that every Carnot algebra can be
written as a quotient of a free Carnot algebra, we shall deduce from the free case a
description of h-affine functions on arbitrary step-2 Carnot algebras, together with
several characterizations of those step-2 Carnot algebras where h-affine functions are
affine in the usual sense of vector spaces. Our interest for h-affine functions stems from
their relationship with a class of sets called precisely monotone, recently introduced
in the literature, as well as from their relationship with minimal hypersurfaces.
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functions
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1 Introduction

In this paper,we introduce the notionofhorizontally affine function andgive a complete
description of such functions on step-2 Carnot algebras, or equivalently on step-2
Carnot groups. In the free step-2 rank-n case, we shall see that the vector space
of horizontally affine functions is isomorphic to the exterior algebra of R

n . Using
the known fact that every step-2 Carnot algebra can be written as a quotient of a
free step-2 Carnot algebra, we shall next deduce from the free case a description of
horizontally affine functions on arbitrary step-2 Carnot algebras, together with several
characterizations of those step-2 Carnot algebras where h-affine functions are affine
in the usual sense of vector spaces.

To introduce the discussion, let us recall some definitions. We refer to Sect. 2 for
more details. Let g = g1⊕g2 be a step-2 Carnot algebra, which means that g is a finite
dimensional real1 nilpotent Lie algebra of step 2, g2 := [g, g] denotes the derived
algebra, and g1 denotes a linear subspace of g that is in direct sum with g2. Such a Lie
algebra is naturally endowed with the group law given by

x · y := x + y + [x, y]
for x, y ∈ g that makes it a step-2 Carnot group. Actually every step-2 Carnot group
can be realized in this way. We shall therefore view a step-2 Carnot algebra both as
a Lie algebra and as a Lie group. We also adopt the notation yt := t y for all t ∈ R

and y ∈ g. A function f : g → R is said to be horizontally affine, and for brevity,
we say that f is h-affine and write f ∈ Affh(g), if for all x ∈ g and y ∈ g1 the
function t ∈ R �→ f

(
x · yt) is affine. Note that this definition is purely algebraic - it

has in particular no connection with the choice of a subRiemannian metric structure
on g – and can be equivalently restated in geometrical terms as follows. A function
f : g → R is h-affine if and only if its restriction to each integral curve of every
left-invariant horizontal vector field is affine when seen as a function from R to R,
where a left-invariant vector field is said to be horizontal whenever it belongs to g1.

Horizontally affine functions appear naturally in relation with monotone sets, an
important class of sets introduced by Cheeger and Kleiner [5], see also [4, 8, 12, 14]
and the discussion below. However, h-affine functions are studied systematically for
the first time here. See also [1] for a further study of a related notion in more general
settings.

Our purposes in the present paper are twofold.We first give a description of h-affine
functions on step-2 Carnot algebras, starting with the free case fromwhich the general
case will follow. We shall next deduce from this description several characterizations
of those step-2 Carnot algebras where h-affine functions are affine. We shall keep the
standard terminology saying that a function f : g → R is affine, writing f ∈ Aff(g),
to mean that f is affine in the usual sense considering the vector space structure on

1 It is worth to stress that our arguments and results can be verbatim extended to finite dimensional nilpotent
Lie algebras of step 2 over an arbitrary field of characteristic zero.
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g. Note indeed that by elementary properties of step-2 Carnot algebras, each affine
function f ∈ Aff(g) is h-affine. In other words, in every step-2 Carnot algebra g, the
vector space Aff(g) is a linear subspace of Affh(g), see the discussion in Sect. 2. This
inclusion may, however, be strict, as we shall see.

More explicitly, h-affine functions can be described with the help of the Carnot
dilations δt : g → g given by δt (x1 + x2) := t x1 + t2x2 for x1 ∈ g1, x2 ∈ g2,
and t ∈ R

∗ := R \ {0}. Given a non-negative integer i we define the vector space of
i-homogeneous h-affine functions as

Affh(g)i := { f ∈ Affh(g) : f ◦ δt = t i f for all t ∈ R
∗}.

We shall prove that every f ∈ Affh(g) can be written in a unique way as a finite sum of
i-homogeneous h-affine functions for some i’s in {0, . . . , κ} where κ := rank g if g is
a free step-2 Carnot algebra and κ := rank g−1 if g is a nonfree step-2 Carnot algebra.
Recall that the rankofg is defined as rank g := dim g1. Furthermore, denotingby�k

R
n

the space of alternating k-multilinear forms over R
n (see Sect. 6 for our conventions

about exterior algebra), we shall also prove that for every i ∈ {0, . . . , κ} the vector
space Affh(g)i is isomorphic to a linear subspace of �κ−i

R
κ . See Theorems 1.1, 1.2,

and 1.3 for detailed statements.
Let us first consider the free case. Throughout this paper, given an integer n ≥ 2,

we shall use the model for the free step-2 rank-n Carnot algebra fn given by

fn := �1
R
n ⊕ �2

R
n

equipped with the Lie bracket where the only nontrivial relations are given by

[θ, θ ′] := θ ∧ θ ′ for θ, θ ′ ∈ �1
R
n .

The induced group law takes the form

(θ + ω) · (θ ′ + ω′) := θ + θ ′ + ω + ω′ + θ ∧ θ ′

for θ, θ ′ ∈ �1
R
n , ω,ω′ ∈ �2

R
n . For notational convenience, we shall frequently

identify fn with �1
R
n × �2

R
n writing elements in fn as (θ, ω) where θ ∈ �1

R
n ,

ω ∈ �2
R
n .

Given integers n ≥ 2, i ∈ {0, . . . , n}, and η ∈ �n−i
R
n , we define ϕη : fn → �n

R
n

as

ϕη(θ, ω) :=
{

ωk ∧ η if i = 2k is even

θ ∧ ωk ∧ η if i = 2k + 1 is odd.
(1.1)

The description of h-affine functions on fn can then be given in terms of the functions
ϕη’s and reads as follows.

Theorem 1.1 For n ≥ 2, we have

(i) Affh(fn) = ⊕n
i=0 Affh(fn)i .
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Furthermore, given i ∈ {0, . . . , n} and ν ∈ �n
R
n\{0}, we have

(ii) f ∈ Affh(fn)i if and only if there is η ∈ �n−i
R
n, which is unique, such that

f ν = ϕη.

Therefore, for i ∈ {0, . . . , n}, the spaces Affh(fn)i and �n−i
R
n are isomorphic as

vector spaces, and hence, so are Affh(fn) and �∗
R
n. In particular, Affh(fn) is a finite

dimensional vector space with dimension 2n.

Let us briefly explain our strategy to prove Theorem 1.1. Let ν ∈ �n
R
n\{0} be

fixed. It is rather easy to verify that if a function f : fn → R is such that f ν = ϕη

for some η ∈ �n−i
R
n with i ∈ {0, . . . , n} then f ∈ Affh(fn)i , see Lemma 3.1. The

injectivity of the map η ∈ �n−i
R
n �→ ϕη is also not hard to verify and follows

from general facts about exterior algebra, see Corollary 6.5. The main difficulties
are thus to get the decomposition given in Theorem 1.1 (i), see Theorem 3.2 and
Proposition 3.4 (i), as well as the fact that every function f ∈ Affh(fn)i can be written
as f ν = ϕν for some ν ∈ �n−i

R
n , see Proposition 3.5. This will occupy most of

Sect. 3 to which we refer for more details. For the sake of completeness, let us mention
the geometric interpretation behind the decomposition in Theorem 1.1 when passing
from fn for n ≥ 3 to any Lie subalgebra of fn that is isomorphic to fn−1. It can be
proved that the zero level set of non-zero n-homogeneous h-affine functions on fn ,
namely, the set {(θ, ω) ∈ fn : ωn/2 = 0} if n is even, {(θ, ω) ∈ fn : θ ∧ ω(n−1)/2 = 0}
if n is odd, coincides with the union of all Lie subalgebras of fn that are isomorphic
to fn−1. Therefore, if f = f0 + · · · + fn ∈ Affh(fn) with fi ∈ Affh(fn)i , one
gets that its restriction to any Lie subalgebra isomorphic to fn−1 coincides with the
restriction to this subalgebra of the sum of the i-homogeneous terms f0 + · · · + fn−1
for i ∈ {0, . . . , n − 1} that show up in the decomposition of f .

Let us now turn to the general case of arbitrary step-2 Carnot algebras. Our starting
point is the known fact that every step-2 Carnot algebra g can be written as a quotient
of free step-2 Carnot algebras. Namely, by the universal property of free step-2 Carnot
algebras, for every n ≥ rank g, there is a surjective Carnot morphism π : fn → g, see
the discussion in Sect. 2. It turns out that there is a one-to-one correspondence between
h-affine functions on g and h-affine functions on fn that factor through fn/Ker π ,
see Lemma 2.3 and Corollary 2.4. The description of h-affine functions on g can
therefore be deduced from the characterization of those functionsϕη that factor through
fn/Ker π . Namely, we shall verify that for η ∈ �i

R
n the function ϕη factors through

fn/Ker π if and only if η annihilates Ker π , which means that η ∈ Anhi Ker π where

Anhi Ker π := {η ∈ �i
R
n : η ∧ ζ = 0 for all ζ ∈ Ker π}

see Lemma 4.1. In the genuinely nonfree setting, such a characterization implies the
following decomposition of Affh(g).

Theorem 1.2 Let g be a step-2 rank-r Carnot algebra. Assume that g is not isomorphic
to fr . Then Affh(g) = ⊕r−1

i=0 Affh(g)i .

Note that, in contrast with the free case, one has Affh(g)r = {0} when g is a step-
2 rank-r Carnot algebra that is not isomorphic to fr . This follows from the fact that
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Ker π �= {0}, and henceAnh0 Ker π = {0}, wheneverπ : fr → g is a surjectiveCarnot
morphism. A description of the summands Affh(g)i is provided by the following
theorem that applies both in the free and in the nonfree cases (note that when g = fr
and n = r , one recovers Theorem 1.1) and where the space of annihilators of Ker π
in �∗

R
n is defined by

AnhKer π := {η ∈ �∗
R
n : η ∧ ζ = 0 for all ζ ∈ Ker π} .

Theorem 1.3 Let g be a step-2 rank-r Carnot algebra, n ≥ r , and π : fn → g
be a surjective Carnot morphism. Then the following hold true. For i ∈ {0, . . . , n},
ν ∈ �n

R
n\{0},

(i) for every η ∈ Anhn−i Ker π , there is a unique f ∈ Affh(g)i such that ( f ◦π)ν =
ϕη;

(ii) for every f ∈ Affh(g)i , there is a unique η ∈ Anhn−i Ker π such that ( f ◦π)ν =
ϕη;

(iii) via this correspondence, Affh(g)i and Anhn−i Ker π are isomorphic as vector
spaces.

Consequently,

(iv) Affh(g) and AnhKer π are isomorphic as vector spaces.

In particular, Affh(g) is a finite dimensional vector space.

As a consequence of Theorem 1.3, one gets that h-affine functions on step-2 Carnot
algebras are polynomials and hence smooth. Let us stress here that there is no regularity
assumption in our definition of h-affine functions. Such functions are indeed only
assumed to be affine when restricted to horizontal lines and were not even assumed
continuous, normeasurable, beforehand.As a further consequence of their smoothness
(one actually only needs local integrability), one can characterize elements in Affh(g)
as those locally integrable functions that are harmonic in the distributional sense with
respect to every subLaplacian on g, see Remark 2.8. Let us mention that horizontally
affine distributions have been recently studied in [1] in wider settings where they can
be proved to be polynomials. Note, however, that this later notion may be different
from a pointwise generalization of our present notion of h-affine functions to more
general settings, as explained at the end of Remark 2.8.

Several characterizations of step-2 Carnot algebras g where Affh(g) = Aff(g) can
easily be deduced from Theorem 1.3, see Theorem 1.4 below and Sect. 5. It turns out
that one of these characterizations can be formulated using a class of Lie algebras
known in literature as I-null, see [11]. We recall that a step-2 Carnot algebra g =
g1 ⊕ g2 is I-null if every bilinear form b : g1 × g2 → R satisfying b(x, [x, y]) = 0
for all x, y ∈ g1 vanishes identically on g1×g2, see Definition 2.6 and Proposition 2.7.

Theorem 1.4 Let g be a step-2 Carnot algebra. Then the following are equivalent:

(i) Affh(g) = Aff(g)
(ii) Affh(g) = ⊕2

i=0 Affh(g)i
(iii)

⊕
i≥3 Affh(g)i = {0}, equivalently, Affh(g)3 = {0}
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(iv) g is I-null
(v)

⊕n
i=3 Anh

n−i Ker π = {0}, equivalently, Anhn−3 Ker π = {0}, for some, equiv-
alently all, n ≥ max{3, rank g}, π : fn → g surjective Carnot morphism.

Note incidentally that it follows from Theorem 1.1 that Affh(fn) = Aff(fn) if and
only if n = 2. Therefore, the equivalent conditions given in Theorem 1.4 hold true on
g = fn if and only if n = 2. Theorem 1.4 can be efficiently applied in several concrete
situations which will be discussed in Sect. 5.2 and to which we refer for more details.

Before closing this introduction, we briefly go back to the relationship between
h-affine functions and precisely monotone sets, as defined in [5] in the Heisenberg
setting. More generally, a subset of a Carnot algebra, identified with a Carnot group,
is said to be precisely monotone if the restriction of its characteristic function to each
integral curve of every left-invariant horizontal vector field is monotone when seen
as a function from R to R. Equivalently, a precisely monotone set is a h-convex set
with h-convex complement, see for instance [15] for more details about h-convex sets.
Precisely monotone sets have been classified in the first Heisenberg algebra f2, in
higher dimensional Heisenberg algebras, and in the direct product f2 × R, see [5, 12,
14]. In the aforementioned step-2 settings, it turns out that the boundary of a nonempty
precisely monotone strict subset is a hyperplane, while in step-3 Carnot algebras the
same statement may be false, see [2, 3]. As a consequence of our results, we actually
get plenty of examples of Carnot algebras already in the step-2 case where there are
precisely monotone subsets whose boundary is not a hyperplane. Indeed, it can easily
be seen that sublevel sets of h-affine functions are precisely monotone. Therefore if g
is a step-2 Carnot algebra that is not I-null and if f ∈ Affh(g) \ Aff(g) then every
sublevel set of f is a precisely monotone set whose boundary is not a hyperplane. We
refer to the recent paper [13] for a more detailed introduction to precisely monotone
sets as well as for a classification of such sets in the step-2 rank-3 case in terms of
sublevel sets of h-affine functions, and for further discussions about higher rank and
higher step cases. To conclude these observations, let us mention that measurable
precisely monotone sets, and therefore sublevel sets of h-affine functions on step-2
Carnot algebras, can be proved to be local minimizers for the intrinsic perimeter, see
[18, Proposition 3.9] and [13, Proposition 2.9].

The rest of this paper is organized as follows. Section2 contains our conventions
and notations about step-2 Carnot algebras and h-affine functions. We also provide
easy facts that will be useful for later arguments. In Sect. 3, we focus on the free case
and prove Theorem 1.1. Theorems 1.2 and 1.3 are proved in Sect. 4. Section5.1 is
devoted to the proof of Theorem 1.4 and Sect. 5.2 to a discussion of several examples.
In the final Sect. 6, we gather notations and facts in linear and exterior algebra.

2 Step-2 Carnot Algebras and Horizontally Affine Functions

We recall that a real2 and finite dimensional Lie algebra g is said to be nilpotent of
step 2 if the derived algebra g2 := [g, g] is nontrivial, i.e., g2 �= {0}, and central, i.e.,

2 As already mentioned in the introduction, our arguments and results can be verbatim extended to finite
dimensional nilpotent Lie algebras of step 2 over an arbitrary field of characteristic zero.
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[g, g2] = {0}. Here, given U , V ⊂ g, we denote by [U , V ] the linear subspace of g
generated by elements of the form [u, v] with u ∈ U , v ∈ V . If g1 is a linear subspace
of g that is in direct sumwith g2 then [g1, g1] = g2 and the decomposition g = g1⊕g2
is therefore a stratification of g. As a matter of fact, every stratification of a nilpotent
Lie algebra of step 2 is of this form.

A step-2 Carnot algebra g is a Lie algebra nilpotent of step 2 equipped with a
stratification g = g1 ⊕ g2. The rank of g is defined as rank g := dim g1. Such a Lie
algebra is naturally endowed with the group law3 given by

x · y := x + y + [x, y]

for x, y ∈ g that makes it a step-2 Carnot group. It is actually well known that any
step-2 Carnot group can be realized in this way. We shall therefore view a step-2
Carnot algebra both as a Lie algebra and group.

Throughout this paper, we shall always denote by g = g1 ⊕ g2 a step-2 Carnot
algebra. Given t ∈ R, x ∈ g, we set xt := t x .

Definition 2.1 Given A ⊂ g we say that f : g → R is A-a f f ine if for every x ∈ g,
y ∈ A, the function t ∈ R �→ f (x · yt ) is affine.

When A = g, one recovers the notion of real-valued affine functions on g seen as
a vector space. Indeed, since g is nilpotent of step 2, for x, y ∈ g, t ∈ R, we have
x · yt = x + t(y + [x, y]) and x + t y = x · (y − [x, y])t . Therefore f : g → R is
g-affine if and only if for every x, y ∈ g, t ∈ R, the function t ∈ R �→ f (x + t y) is
affine, i.e., f is affine, see Proposition 6.1. In particular, real-valued affine functions
are A-affine for every A ⊂ g.

In the present paper, we are interested in g1-affine functions, which we shall call
horizontally affine, h-affine in short, namely:

Definition 2.2 (h-affine functions) We say that f : g → R is horizontally affine,
h-affine in short, if f is g1-affine. In other words, f is h-affine if for every x ∈ g,
y ∈ g1, the function t ∈ R �→ f (x · yt ) is affine. We denote by Affh(g) the real vector
space of h-affine functions on g.

We say that � ⊂ g is a horizontal line if there are x ∈ g, y ∈ g1\{0} such that
� = {x · yt : t ∈ R}. We already noticed that horizontal lines are 1-dimensional
affine subspaces of g and therefore h-affine functions can equivalently be defined as
functions whose restriction to every horizontal line is affine.

We recall that a Carnot morphism π : g → g′ between step-2 Carnot algebras
g = g1 ⊕ g2 and g′ = g′

1 ⊕ g′
2 is a homomorphism of graded Lie algebras, which

means that π is a linear map such that π([x, y]) = [π(x), π(y)] for all x, y ∈ g and
π(gk) ⊂ g′

k for k = 1, 2. Note that a Carnot morphism is both a homomorphism of
graded Lie algebras and a group homomorphism.

3 Our convention for the group law is nothing but a technical convenience. Any other choice where [x, y]
is replaced by c [x, y] for some c ∈ R\{0} independent of x and y leads to the same results.
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Lemma 2.3 Let g, g′ be step-2Carnot algebras andπ : g → g′ be aCarnotmorphism.
For f ∈ Affh(g

′), we have f ◦ π ∈ Affh(g). If π is surjective then f ∈ Affh(g
′) if and

only if f ◦ π ∈ Affh(g).

Proof Carnot morphisms map affinely horizontal lines to either horizontal lines or
singletons therefore f ◦ π ∈ Affh(g) when f ∈ Affh(g′). If the Carnot morphism
π : g → g′ is surjective then every horizontal line in g′ is the affine image through π

of a horizontal line in g and therefore f ∈ Affh(g′) when f ◦ π ∈ Affh(g). �
For t ∈ R

∗ := R \ {0}, the Carnot dilation δt : g → g is defined as the linear map
such that δt (x) = tk x for x ∈ gk , k = 1, 2. The family (δt )t∈R∗ is a one parameter
group of Carnot automorphisms. Recall that, given a non-negative integer i , we denote
by Affh(g)i := { f ∈ Affh(g) : f ◦ δt = t i f for all t ∈ R

∗}, the linear subspace of
Affh(g) of i-homogeneous h-affine functions on g. Since dilations commute with
Carnot morphisms, we get from Lemma 2.3 the following corollary.

Corollary 2.4 Let g, g′ be step-2 Carnot algebras, π : g → g′ be a Carnot morphism,
and i be a non-negative integer. For f ∈ Affh(g

′)i , we have f ◦ π ∈ Affh(g)i . If π is
surjective then f ∈ Affh(g

′)i if and only if f ◦ π ∈ Affh(g)i .

We already noticed that the set Aff(g) of real-valued affine functions on g is a linear
subspace of Affh(g). More precisely, we have the following inclusion.

Lemma 2.5 Aff(g) is a linear subspace of
⊕2

i=0 Affh(g)i .

Proof Let f ∈ Aff(g). There are f0 ∈ R and linear forms fk : gk → R, k = 1, 2,
such that f (x + z) = f0 + f1(x) + f2(z) for all x ∈ g1, z ∈ g2. Clearly, constant
functions belong to Affh(g)0 and the functions x + z ∈ g1 ⊕ g2 �→ f1(x) and
x + z ∈ g1 ⊕ g2 �→ f2(z) belong to Affh(g)1 and Affh(g)2, respectively. �

We say that step-2 Carnot algebras are isomorphic if there is a bijective Carnot
morphism from one to the other. Note that being h-affine, respectively, affine, are
intrinsic properties, in particular Affh(g) = Aff(g) if and only if Affh(g′) = Aff(g′)
for isomorphic step-2 Carnot algebras g, g′. This indeed more explicitly follows from
Lemma 2.3 together with the fact that Carnot morphisms are linear maps.

Let us recall that by the universal property of free step-2 Carnot algebras, see Sect. 1
for our conventions about the free step-2 rank-n Carnot algebra fn , given a step-2 rank-
r Carnot algebra g and given an integer n ≥ r , there is a surjective Carnot morphism
π : fn → g, see for instance [17, p.45].We also recall that for such a Carnotmorphism,
Ker π is a graded ideal in fn , which means that Ker π = i1 ⊕ i2 where ik are linear
subspaces of �k

R
n , k = 1, 2, such that θ ∧ θ ′ ∈ i2 for all θ ∈ �1

R
n , θ ′ ∈ i1.

We now recall the definition of I-null Lie algebras that will be used in one of our
characterizations of those step-2 Carnot algebras where h-affine functions are affine,
see Theorem 1.4.

Definition 2.6 [11] A Lie algebram is said to be I-null if for every symmetric bilinear
invariant form B : m × m → R, we have B(m, [m,m]) = 0. Here B is said to be
invariant if B(x, [y, z]) = B([x, y], z) for all x, y, z ∈ m, or equivalently, if the
trilinear form B(·, [·, ·]) is alternating on m × m × m.
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For step-2 Carnot algebras, the previous definition can be rephrased in the following
way, of which we omit the elementary proof.

Proposition 2.7 A step-2 Carnot algebra g = g1 ⊕ g2 is I-null if and only if every
bilinear form b : g1 × g2 → R satisfying b(x, [x, y]) = 0 for all x, y ∈ g1 vanishes
identically on g1 × g2.

Remark 2.8 In the present article, we focus on step-2 Carnot algebras or, equivalently,
step-2 Carnot groups. Let us mention that the notion of horizontally affine function
makes sense in broader generality. One may for instance consider Carnot groups of
arbitrary step (see [16], [10] for a primer on the subject) or,more generally, a connected
nilpotent Lie group G equipped with a vector subspace  of its Lie algebra g that Lie
generates g. Thenwe say that f : G → R is-affine if for every X ∈  the restriction
of f to each integral curve of X is affine when seen as a function from R to R. Here an
element X ∈  is seen as a left-invariant vector field on G. When G is a step-2 Carnot
group with stratified Lie algebra g = g1 ⊕ g2 and  = g1 is the first, usually called
horizontal, layer of the stratification of g, one recovers Definition 2.2, and this latter
definition can hence be extended to Carnot groups of arbitrary step in the obvious way.
Going back to the aforementioned more general setting and considering G equipped
with a Haar measure, let us mention that we have the following characterizations of
locally integrable -affine functions. Namely, f ∈ L1

loc(G) has a representative that
is -affine if and only if one of the following equivalent conditions holds true in the
distributional sense:

(A.1) X2 f = 0 for every X ∈ 

(A.2) XY f + Y X f = 0 for every X ,Y ∈ 

(A.3) X2
1 f + · · · + X2

m f = 0 for every basis (X1, . . . , Xm) of .

Indeed, if a representative of f ∈ L1
loc(G) is -affine then (A.1) holds true as a

consequence of the very definitions. Conversely, if f ∈ L1
loc(G) satisfies (A.1) then f

has a representative that is smooth by Hörmander’s hypoellipticity theorem and then
it clearly follows from (A.1) that this representative is -affine. The fact that (A.1) is
equivalent to (A.2) is a consequence of Hörmander’s hypoellipticity theorem together
with the identity (X + Y )2 f = X2 f + XY f + Y X f + Y 2 f for smooth functions f .
Condition (A.1) obviously implies (A.3). Conversely, if f ∈ L1

loc(G) satisfies (A.3)
and X ∈ \{0}, one can complete X into a basis X , X2, . . . , Xm of. Then for every
ε > 0 one has X2 f + εX2

2 f + · · · + εX2
m f = 0 with the left-hand side converging

to X2 f as ε → 0 and therefore X2 f = 0. See also [1] for other generalizations of
condition (A.1) for locally integrable functions.

To conclude this remark, note that in the specific setting considered in this paper,
i.e., step-2 Carnot algebras g = g1 ⊕ g2, it follows from Theorem 1.3 that h-affine
functions are smooth and hence locally integrable. Therefore each of the distributional
sense conditions (A.1), (A.2), (A.3) with  = g1 makes sense for all h-affine func-
tions and hence characterizes such a class of functions. In the more general setting
considered in the present remark, it is, however, not clear to us whether -affinity
implies local integrability, and the class of locally integrable -affine functions that
can be characterized through each of the equivalent conditions (A.1), (A.2), and (A.3)
could therefore be a strict subset of the class of -affine functions.
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3 Horizontally Affine Functions on Free Step-2 Carnot Algebras

This section is devoted to the proof of Theorem1.1. The proofwill proceed into 4 steps.
We first verify in Lemma 3.1 that for η ∈ �n−i

R
n , we have ϕη ∈ Affh(fn,�n

R
n)i

where ϕη is given by (1.1), together with the injectivity of the linear map η ∈
�n−i

R
n �→ ϕη ∈ Affh(fn,�n

R
n)i . We shall next prove Theorem 1.1 for n = 2,

see Theorem 3.2, and deduce properties of h-affine functions on fn for n ≥ 3 to
be used in the next step, see Proposition 3.3. When n ≥ 3, we first prove that
Affh(fn) = ⊕n

i=0 Affh(fn)i together with preliminary information about elements in
Affh(fn)i , see Proposition 3.4. We then upgrade these information in Proposition 3.5
to get the description stated in Theorem 1.1.

For notational convenience, we identify in this section fn with �1
R
n × �2

R
n and

write elements in fn as x = (θ, ω) with θ ∈ �1
R
n , ω ∈ �2

R
n . In the next lemma,

we denote by Affh(fn,�n
R
n)i the analogue of Affh(fn)i for �n

R
n-valued functions.

More explicitly, f : fn → �n
R
n belongs to Affh(fn,�n

R
n)i if and only if for every

(θ, ω) ∈ fn , θ ′ ∈ �1
R
n , the function t ∈ R �→ f ((θ, ω) · (tθ ′, 0)) ∈ �n

R
n is affine,

and f ◦ δt = t i f for all t ∈ R
∗.

Lemma 3.1 For n ≥ 2, i ∈ {0, . . . , n}, and η ∈ �n−i
R
n, we have ϕη ∈

Affh(fn,�
n
R
n)i where ϕη is given by (1.1). Furthermore, the linear map η ∈

�n−i
R
n �→ ϕη ∈ Affh(fn,�

n
R
n)i is injective.

Proof Let η ∈ �n−i
R
n . Clearly ϕη ◦ δt = t iϕη for all t ∈ R

∗. If i = 2k is even, we
have

ϕη((θ, ω) · (tθ ′, 0)) = (ω + tθ ∧ θ ′)k ∧ η = ωk ∧ η + tkωk−1 ∧ θ ∧ θ ′ ∧ η,

if i = 2k + 1 is odd,

ϕη((θ, ω) · (tθ ′, 0)) = (θ + tθ ′) ∧ (ω + tθ ∧ θ ′)k ∧ η = θ ∧ ωk ∧ η + tθ ′ ∧ ωk ∧ η,

for all (θ, ω) ∈ fn , θ ′ ∈ �1
R
n . Therefore ϕη ∈ Affh(fn,�n

R
n)i . For the injectivity

of the linear map η ∈ �n−i
R
n �→ ϕη ∈ Affh(fn,�n

R
n)i , see Corollary 6.5. �

Theorem 3.2 We have Affh(f2) = Aff(f2).

Proof We recall that a set � ⊂ f2 is said to be a horizontal line if � = {(θ, ω) · (tθ ′, 0) :
t ∈ R} for some (θ, ω) ∈ f2, θ ′ ∈ �1

R
2\{0}. Define the h-affine hull of a set

A ⊂ f2 as the smallest set C containing A with the property that if a horizontal line
� meets C in more than one point then � ⊂ C . It follows from [5, Lemma 4.10] that
there are 4 points in f2 whose h-affine hull is f2. Indeed, given linearly independent
θ, θ ′ ∈ �1

R
2, the h-affine hull C of {(0, 0), (θ, 0), (θ ′, 0), (θ + θ ′, θ ∧ θ ′)} contains a

pair of parallel lines with distinct projection in the sense of [5], namely, the horizontal
line through (0, 0) and (θ ′, 0) and the horizontal line through (θ, 0) and (θ+θ ′, θ∧θ ′),
thereforeC = f2 by [5, Lemma 4.10]. This implies that Affh(f2) is a vector space with
dimension ≤ 4. Since Aff(f2) is a 4-dimensional linear subspace of Affh(f2), we get
that Affh(f2) = Aff(f2), as claimed. �
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Note that Theorem 1.1 for n = 2 follows from Lemma 2.5, Lemma 3.1 and
Theorem 3.2. For n ≥ 3, we set �n := ⋃

θ,θ ′∈�1Rn Lie(θ, θ ′) where Lie(θ, θ ′) :=
span{θ, θ ′}×span{θ ∧θ ′} denotes the Lie subalgebra of fn generated by θ, θ ′ ∈ �1

R
n .

We refer to Definition 2.1 for the definition of �n-affine functions.

Proposition 3.3 For n ≥ 3, f ∈ Affh(fn), the following hold true:

f is �n-affine, (3.1)

fω ∈ Aff(�1
R
n) for all ω ∈ �2

R
n, (3.2)

where fω : �1
R
n → R is given by fω(θ) := f (θ, ω) and Aff(�1

R
n) denotes the

space of real-valued affine functions on �1
R
n.

Proof Clearly, composing h-affine functionswith left-translations yields h-affine func-
tions. Therefore, to prove that every f ∈ Affh(fn) is �n-affine, we only need to verify
that for every f ∈ Affh(fn), θ1, θ2 ∈ �1

R
n , θ1 ∧ θ2 �= 0, (θ, ω) ∈ Lie(θ1, θ2),

the function t ∈ R �→ f (tθ, tω) is affine. Set h := Lie(θ1, θ2) and denote by fh
the restriction of f to h. On the one hand, the structure of step-2 Carnot algebra of
fn induces on h a structure of step-2 Carnot algebra that makes it isomorphic to f2.
Therefore Affh(h) = Aff(h) by Theorem 3.2. On the other hand, fh ∈ Affh(h). Thus
fh ∈ Aff(h), which implies that for all (θ, ω) ∈ h, the function t ∈ R �→ f (tθ, tω) is
affine and concludes the proof of (3.1). To prove (3.2), note that for ω ∈ �2

R
n ,

θ, θ ′ ∈ �1
R
n , t ∈ R, we have (θ + tθ ′, ω) = (θ, ω) · (tθ ′, tθ ′ ∧ θ). Since

(θ ′, θ ′ ∧ θ) ∈ �n , it follows from Proposition 6.1 that fω ∈ Aff(�1
R
n) for every

�n-affine function f , and hence, in particular for f ∈ Affh(fn) by (3.1). �
In addition to the notations given in the appendix, see Sect. 6, we shall use the

following ones in the rest of this section. Recall that (e1, . . . , en) denotes a basis of
�1

R
n . For θ = ∑n

j=1 θ j e j ∈ �1
R
n , we set θJ := θ j1 · · · θ jk for J = ( j1, . . . , jk) ∈

J n
k , see (6.4) for the definition of J n

k , with the convention θ∅ := 1.
In the following, for α, β ∈ N, wewrite αβ to denote themulti-indexwith 2 indices.

We set

I := {αβ : α, β ∈ N \ {0}, α < β} ,

and we equip I with the lexicographic order, i.e., we write αβ < α′β ′ to mean either
that α = α′ and β < β ′ or that α < α′. We set I n

0 := {∅},

I n
k :=

{
(α1β1, . . . , αkβk) ∈ Ik : 12 ≤ α1β1 < · · · < αkβk ≤ (n − 1)n

}

for k ∈ {1, . . . , n(n − 1)/2}, and I n := ∪0≤k≤n(n−1)/2 I n
k . We write im ∅ := ∅ and

im I := {α1β1, . . . , αkβk} ⊂ I for I = (α1β1, . . . , αkβk) ∈ I n
k . Given I , I ′ ∈ I n

,
we denote by I\I ′ ∈ I n

the unique element in I n
such that im(I\I ′) = im I\ im I ′

and we write I ′ ⊂ I to mean that im I ′ ⊂ im I .
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We recall from Sect. 6 that eJ := e j1 ∧ · · · ∧ e jk for a multi-index J =
( j1, . . . , jk) ∈ J n

k . For ω = ∑
αβ∈I n

1
∼=J n

2
ωαβ eαβ ∈ �2

R
n , we set ω∅ := 1 and

ωI := ωα1β1 · · ·ωαkβk for I = (α1β1, . . . , αkβk) ∈ I n
k .

We write N(∅) := ∅ and N(I ) := {α1, β1, . . . , αk, βk} ⊂ N for I =
(α1β1, . . . , αkβk) ∈ I n

k . We set In
0 := {∅} and

In
k :=

{
(α1β1, . . . , αkβk) ∈ I n

k : N(αiβi ) ∩ N(α jβ j ) = ∅ for all i �= j
}

.

for k ∈ {1, . . . , n(n − 1)/2}. Note that I n
0 = In

0 , I
n
1 = In

1 . When n ≥ 3, we have
In
k � In

k for 2 ≤ k ≤ n(n − 1)/2, and In
k = ∅ for k > �n/2�.

Proposition 3.4 For n ≥ 3, the following holds true:

(i) Affh(fn) = ⊕n
i=0 Affh(fn)i ,

(ii) for k ∈ {0, . . . , �n/2�}, every f ∈ Affh(fn)2k can be written as

(θ, ω) �→
∑

I∈In
k

aI ωI

for constants aI ∈ R,
(iii) for k ∈ {0, . . . , �(n − 1)/2�}, every f ∈ Affh(fn)2k+1 can be written as

(θ, ω) �→
∑

I∈In
k

bI (θ) ωI

for linear forms bI : �1
R
n → R.

Proof For i ∈ {1, . . . , n}, the Affh(fn)i are linear subspaces of Affh(fn) that are in
direct sum. Therefore

⊕n
i=0 Affh(fn)i ⊂ Affh(fn). Conversely, let f ∈ Affh(fn) be

given.
We first prove that there are functions cI : �1

R
n → R, I ∈ I n

, such that

f (θ, ω) =
∑

I∈I n

cI (θ) ωI . (3.3)

Let θ ∈ �1
R
n be given. We know from (3.1) that, for every ω ∈ �2

R
n ,

1 ≤ α < β ≤ n, the function t ∈ R �→ f ((θ, ω) · (0, teαβ)) is affine. Since
f ((θ, ω) · (0, teαβ)) = f (θ, ω + teαβ), it follows from elementary properties of mul-
tiaffine maps, see Proposition 6.2 applied to ω ∈ �2

R
n �→ f (θ, ω), that there are

cI (θ) ∈ R, I ∈ I n
, such that (3.3) holds true.

Next, we prove that

cI ∈ Aff(�1
R
n) for all I ∈ I n

. (3.4)
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WehaveI n = ∪0≤k≤n(n−1)/2 I n
k andwe prove by induction on k that cI ∈ Aff(�1

R
n)

for all I ∈ I n
k . For k = 0, we have I n

0 = {∅} with c∅(θ) = f (θ, 0) and we apply
(3.2) with ω = 0 to get that c∅ ∈ Aff(�1

R
n). Given k ∈ {1, . . . , n(n− 1)/2}, assume

that cI ′ ∈ Aff(�1
R
n) for all I ′ ∈ ∪0≤i≤k−1I n

i . For I = (α1β1, . . . , αkβk) ∈ I n
k , we

apply (3.2) with ω = ∑k
j=1 e

α jβ j to get that

cI +
∑

I ′∈∪0≤i≤k−1I n
i

I ′⊂I

cI ′ ∈ Aff(�1
R
n) .

By induction hypothesis, we get that cI ∈ Aff(�1
R
n), which concludes the proof

of (3.4).
It follows from (3.4) that there are constants aI ∈ R and linear forms bI : �1

R
n →

R, I ∈ I n
, such that cI (θ) = aI + bI (θ) for every θ ∈ �1

R
n . For k ∈ {0, . . . , n(n −

1)/2}, we set

f2k(θ, ω) :=
∑

I∈I n
k

aI ωI and f2k+1(θ, ω) :=
∑

I∈I n
k

bI (θ) ωI ,

so that f = ∑n(n−1)+1
i=0 fi . We claim that fi ∈ Affh(fn)i for all i ∈ {0, . . . , n(n−1)+

1}. Indeed, let (θ, ω) ∈ fn , θ ′ ∈ �1
R
n , s ∈ R be given. Since the dilations are Carnot

automorphisms, we know from Lemma 2.3 that f ◦ δt ∈ Affh(fn) for all t ∈ R
∗.

Therefore

n(n−1)+1∑

i=0

t i fi ((θ, ω) · (sθ ′, 0)) = ( f ◦ δt )((θ, ω) · (sθ ′, 0))

= ( f ◦ δt )(θ, ω) + s(( f ◦ δt )((θ, ω) · (θ ′, 0))
− ( f ◦ δt )(θ, ω))

=
n(n−1)+1∑

i=0

t i ( fi (θ, ω) + s( fi ((θ, ω) · (θ ′, 0))

− fi (θ, ω)))

for all t ∈ R
∗, which implies that fi ((θ, ω) · (sθ ′, 0)) = fi (θ, ω) + s( fi ((θ, ω) ·

(θ ′, 0)) − fi (θ, ω)) for all i ∈ {0, . . . , n(n − 1) + 1}. Since this holds true for all
(θ, ω) ∈ fn , θ ′ ∈ �1

R
n , s ∈ R, we get that fi ∈ Affh(fn). Clearly, we also have

fi ◦δt = t i fi for all t ∈ R
∗. Therefore fi ∈ Affh(fn)i for all i ∈ {0, . . . , n(n−1)+1},

as claimed.
For k ∈ {0, . . . , n(n − 1)/2}, we now claim that

aI = 0 for all I ∈ I n
k \ In

k . (3.5)
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For k ∈ {0, 1}, we have I n
k = In

k and there is nothing to prove. Let k ∈ {2, . . . , n(n−
1)/2} be given. First, note that I ∈ I n

k \In
k if and only if there are integers 1 ≤ α <

β < γ ≤ n such that either (αβ, αγ ) ⊂ I , or (αγ, βγ ) ⊂ I , or (αβ, βγ ) ⊂ I . Now,
let 1 ≤ α < β < γ ≤ n be given. On the one hand, since f2k ∈ Affh(fn), we know
that, for every ω ∈ �2

R
n , the function t ∈ R �→ f2k((eα, ω) · (t(eβ + eγ ), 0) =

f2k(0, ω + t(eαβ + eαγ )) is affine. On the other hand, this function is a polynomial
for which the coefficient of t2, namely,

∑

I∈I n
k

(αβ,αγ )⊂I

aI ωI\(αβ,αγ )

must therefore vanish. Since this holds true for every ω ∈ �2
R
n , it follows that

aI = 0 for every I ∈ I n
k such that (αβ, αγ ) ⊂ I . Considering the function t ∈ R �→

f2k(0, ω + t(eαγ + eβγ )), respectively, t ∈ R �→ f2k(0, ω + t(eαβ + eβγ )), and
arguing in a similar way, we get that aI = 0 for every I ∈ I n

k such that (αγ, βγ ) ⊂ I ,
respectively, such that (αβ, βγ ) ⊂ I , which concludes the proof of (3.5).

For k ∈ {0, . . . , n(n − 1)/2}, we claim that

bI (θ) = 0 for all θ ∈ �1
R
n, I ∈ I n

k \ In
k . (3.6)

Indeed, let k ∈ {0, . . . , n(n − 1)/2}, θ ∈ �1
R
n be given. Consider the function g :

fn → Rgiven by g(τ, ω) := f2k+1(θ, ω) for (τ, ω) ∈ fn .Wehave g((τ, ω)·(tτ ′, 0)) =
f2k+1((θ, ω) · (0, tτ ∧ τ ′)) for all (τ, ω) ∈ fn , τ ′ ∈ �1

R
n . Since f2k+1 ∈ Affh(fn),

it follows from (3.1) that g ∈ Affh(fn). We then argue as for the proof of (3.5) to get
that bI (θ) = 0 for every I ∈ I n

k \ In
k , which concludes the proof of (3.6).

For k ∈ {�n/2� + 1, . . . , n(n − 1)/2}, we have In
k = ∅ and it follows from (3.5)

and (3.6) that f2k = f2k+1 = 0.
We now prove that fn+1 = 0 whenever n is even. Assume that n = 2p with

p ≥ 2. Let I = (α1β1, . . . , αpβp) ∈ I2p
p be given. Note that N(I ) = {1, . . . , 2p}.

Therefore, to show that bI = 0, we need to verify that bI (eα j ) = bI (eβ j ) = 0 for
every j ∈ {1, . . . , p}. Let j ∈ {1, . . . , p} be given. Set ω j := ∑

1≤i≤p, i �= j e
αiβi . On

the one hand, since fn+1 ∈ Affh(fn), the function t ∈ R �→ fn+1((eα j , ω j ) ·(teβ j , 0))
is affine. On the other hand,

fn+1((e
α j , ω j ) · (teβ j , 0)) = fn+1(e

α j + teβ j , teα jβ j + ω j )

= tbI (e
α j + teβ j ) = tbI (e

α j ) + t2bI (e
β j ) .

Therefore the coefficient of t2 vanishes, i.e., bI (eβ j ) = 0. To prove that bI (eα j ) = 0,
we argue in a similar way considering the function t ∈ R �→ fn+1((−eβ j , ω j ) ·
(teα j , 0)).

All together, we have shown that f = ∑n
i=0 fi with fi ∈ Affh(fn)i that can be

written as in (ii) when i = 2k is even, respectively, as in (iii) when i = 2k + 1 is odd,
which concludes the proof of the proposition. �
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Proposition 3.5 For n ≥ 3, i ∈ {0, . . . , n}, ν ∈ �n
R
n\{0}, every f ∈ Affh(fn)i can

be written as f ν = ϕη for some η ∈ �n−i
R
n.

Proof Assume with no loss of generality that ν = e1 ∧ · · · ∧ en . We first prove the
proposition when i = 2k is even. Let f ∈ Affh(fn)2k and let aI ∈ R, I ∈ In

k , be given
by Proposition 3.4 (ii) so that

f (θ, ω) =
∑

I∈In
k

aI ωI .

For k = 0 we get that f is constant and the required conclusion clearly holds true.
Next, let us consider the case n = 2p with p ≥ 2 and k = p. For ω ∈ �2

R
2p, we

have

ωp = p!
∑

I∈I2p
p

σ(I )ωI ν

where, given I = (α1β1, . . . , αpβp) ∈ I2p
p , σ(I ) denotes the signature of the per-

mutation of {1, . . . , 2p} given by (1, 2, . . . , 2p) �→ (α1, β1, . . . , αp, βp). Therefore
it suffices to prove that

σ(I )aI = σ(I ′)aI ′ for all I , I ′ ∈ I2p
p . (3.7)

On the one hand, since f ∈ Affh(f2p), we know that for all (θ, ω) ∈ f2p, θ ′ ∈ �1
R
2p,

the function

t ∈ R �→ f ((θ, ω) · (tθ ′, 0)) =
∑

I∈I2p
p

aI (ω + tθ ∧ θ ′)I

is affine. On the other hand, this function is a polynomial for which the coefficient of
t2 is given by

∑

I∈I2p
p

aI
∑

H ,K∈I2p
1

H ,K⊂I , H �=K

ωI\(H∪K ) (θ ∧ θ ′)H (θ ∧ θ ′)K =
∑

L∈I2p
p−2

ωL

∑

I∈I2p
p

I⊃L

aI (θ ∧ θ ′)I\L

and must therefore vanish. Since this holds true for all ω ∈ �2
R
2p, it follows that for

all L ∈ I2p
p−2, θ, θ ′ ∈ �1

R
2p,

∑

I∈I2p
p

I⊃L

aI (θ ∧ θ ′)I\L = 0.
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Now let L ∈ I2p
p−2 be given and let 1 ≤ α < β < δ < γ ≤ 2p be such that

{1, . . . , 2p}\N(L) = {α, β, δ, γ }. Then the previous equality reads as

aL∪(αβ,δγ )(θ ∧ θ ′)αβ(θ ∧ θ ′)δγ
+ aL∪(αδ,βγ )(θ ∧ θ ′)αδ(θ ∧ θ ′)βγ + aL∪(αγ,βδ)(θ ∧ θ ′)αγ (θ ∧ θ ′)βδ = 0

for all θ, θ ′ ∈ �1
R
2p. Looking at the coefficient of θαθ ′

βθδθ
′
γ we get that aL∪(αβ,δγ ) =

aL∪(αγ,βδ). Looking at the coefficient of θαθ ′
δθβθ ′

γ we get that aL∪(αδ,βγ ) =
−aL∪(αγ,βδ). Therefore, we have proved that σ(I )aI = σ(I ′)aI ′ for all I , I ′ ∈ I2p

p

such that I , I ′ ⊃ L for some L ∈ I2p
p−2. Since one can pass from any I ∈ I2p

p to any

I ′ ∈ I2p
p by a finite number of such steps, (3.7) follows.

Let us now consider the case n ≥ 3 and i = 2k is even with 2 ≤ i ≤ n − 1.
For J ∈ J n

2k set I J
k := {I ∈ In

k : N(I ) = im J } and define f J : fn → R by
f J (θ, ω) := ∑

I∈I J
k
aI ωI so that

f =
∑

J∈J n
2k

f J .

Set �1 J := span{e j : j ∈ im J } and �2 J := span{e j j ′ : j, j ′ ∈ im J }. We have
f J ((θ, ω) · (tθ ′, 0)) = f ((θ, ω) · (tθ ′, 0)) for all θ, θ ′ ∈ �1 J , ω ∈ �2 J . Since
f ∈ Affh(fn), it follows that the restriction of f J to �1 J × �2 J ∼= f2k belongs to
Affh(f2k). Since ( f J ◦ δt )(θ, ω) = t2k f J (θ, ω) for all (θ, ω) ∈ �1 J × �2 J and all
t ∈ R

∗, we get that the restriction of f J to �1 J × �2 J belongs to Affh(f2k)2k and
it follows from the previous case that there is ηJ ∈ R such that f J (θ, ω) eJ = ηJ ωk

for all (θ, ω) ∈ �1 J × �2 J . Since f J does not depend on θ , this equality holds
actually true for all θ ∈ �1

R
n , ω ∈ �2 J . For (θ, ω) ∈ fn , we have f J (θ, ω) =

f J (θ,�J (ω)) where �J : �2
R
n → �2 J denotes the projection map given by

�J (ω) := ∑
1≤ j< j ′≤n
j, j ′∈im J

ω j j ′ e j j
′
. Therefore, for (θ, ω) ∈ fn , we have

f (θ, ω) ν =
∑

J∈J n
2k

f J (θ,�J (ω)) ν =
∑

J∈J n
2k

σJ ηJ �J (ω)k ∧ eJ
c

where σJ ∈ {−1, 1} is such that ν = σJ eJ ∧eJ
c
. Now, note that (ω−�J (ω))∧eJ

c =
0, therefore �J (ω)k ∧ eJ

c = ωk ∧ eJ
c
, and the previous equality becomes

f (θ, ω) ν =
∑

J∈J n
2k

σJ ηJ ωk ∧ eJ
c = ωk ∧ η

where η := ∑
J∈J n

2k
σJ ηJ eJ

c ∈ �n−2k
R
n , which concludes the proof of the propo-

sition when i = 2k is even.
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We now consider the case where i = 2k + 1 is odd. Let f ∈ Affh(fn)2k+1 and let
bI : �1

R
n → R, I ∈ In

k , be linear forms given by Proposition 3.4 (iii) so that

f (θ, ω) =
∑

I∈In
k

bI (θ) ωI .

For k = 0 we get that f (θ, ω) = b∅(θ) and the required conclusion clearly holds true.
Thus assume that k ∈ {1, . . . , �(n − 1)/2�} and let θ ∈ �1

R
n be given. As in the

proof of (3.6), consider the function g : fn → R given by g(τ, ω) := f2k+1(θ, ω) for
(τ, ω) ∈ fn . We have g ∈ Affh(fn), see the proof of (3.6), and since g ◦ δt = t2kg, it
follows that g ∈ Affh(fn)2k . Then we know from the previous cases and Corollary 6.5
that there is a unique η(θ) ∈ �n−2k

R
n such that f (θ, ω)ν = ωk ∧ η(θ) for all ω ∈

�2
R
n . Next, it follows from the linearity of the bI that themap θ ∈ �1

R
n �→ ωk∧η(θ)

is linear for everyω ∈ �2
R
n . Since span{ωk : ω ∈ �2

R
n} = �2k

R
n , see (6.1), we get

that η : �1
R
n → �n−2k

R
n is linear.We nowclaim that θ∧η(θ) = 0 for all θ ∈ �1

R
n .

Indeed, on the one hand, we know that the function t ∈ R �→ f ((θ ′, ω) · (tθ, 0)) =
f (θ ′ + tθ, ω + tθ ′ ∧ θ) is affine for all (θ, ω) ∈ fn , θ ′ ∈ �1

R
n . On the other hand,

we have

f (θ ′ + tθ, ω + tθ ′ ∧ θ) ν = (ω + tθ ′ ∧ θ)k ∧ η(θ ′ + tθ)

= (ωk + kt ωk−1 ∧ θ ′ ∧ θ) ∧ (η(θ ′) + t η(θ))

= ωk ∧ η(θ ′) + t(ωk ∧ η(θ) + k ωk−1 ∧ θ ′ ∧ θ ∧ η(θ ′))
+ t2 k ωk−1 ∧ θ ′ ∧ θ ∧ η(θ) ,

and hence the coefficient of t2 vanishes, i.e., ωk−1 ∧ θ ′ ∧ θ ∧ η(θ) = 0 for every
θ, θ ′ ∈ �1

R
n , ω ∈ �2

R
n . Since span{ωk−1 ∧ θ ′ : θ ′ ∈ �1

R
n, ω ∈ �2

R
n} =

�2k−1
R
n , see (6.2), we get that θ ∧ η(θ) = 0 for all θ ∈ �1

R
n , as claimed. Then the

required conclusion follows from Proposition 6.6, and this concludes the proof of the
proposition. �

4 Horizontally Affine Functions on Arbitrary Step-2 Carnot Algebras

In this section, we prove Theorem 1.2, that will be deduced from Theorem 1.1 writing
a step-2 rank-r Carnot algebra that is not isomorphic to fr as a proper quotient of fr ,
and Theorem 1.3. Themain argument for proving both theorems is given in Lemma 4.1
where we characterize those functions in Affh(fn) j that factor through fn/i where i
a graded ideal of fn . We refer to (6.5) and (6.6) for the notions of annihilators. For
notational convenience, we shall again identify fn with�1

R
n ×�2

R
n throughout this

section.

Lemma 4.1 Let n ≥ 2 and i be a graded ideal of fn. For j ∈ {0, . . . , n}, η ∈ �n− j
R
n,

the map ϕη given by (1.1) factors through fn/i if and only if η ∈ Anhn− j i.
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Proof Write the graded ideal i of fn ∼= �1
R
n × �2

R
n as i = i1 × i2 where i1, i2 are

linear subspaces of�1
R
n ,�2

R
n such that θ ∧θ ′ ∈ i2 for all θ ∈ �1

R
n , θ ′ ∈ i1. Recall

that ϕ : fn → �n
R
n factors through fn/i if and only if ϕ(θ + τ, ω + ζ ) = ϕ(θ, ω) for

all (θ, ω) ∈ fn , (τ, ζ ) ∈ i. If η ∈ �n
R
n then ϕη is constant and therefore clearly factors

through fn/i. Since Anhn i = �n
R
n , see (6.7), this proves the lemma for j = 0. If

η ∈ �n−1
R
n then ϕη(θ, ω) = θ ∧ η. Therefore ϕη factors through fn/i if and only

if τ ∧ η = 0 for all τ ∈ i1, i.e., η ∈ Anhn−1 i1 = Anhn−1i, where the last equality
comes from (6.8), which proves the lemma for j = 1. Now let j ∈ {2, . . . , n}. For
η ∈ Anhn− j i, it easily follows from (1.1) that ϕη factors through fn/i. Conversely,
let η ∈ �n− j

R
n and assume that ϕη factors through fn/i. Then, for all (θ, ω) ∈ fn ,

ζ ∈ i2, t ∈ R, we have ϕη(θ, ω + tζ ) = ϕη(θ, ω), i.e.,

{
(ω + tζ )k ∧ η = ωk ∧ η if j = 2k is even

θ ∧ (ω + tζ )k ∧ η = θ ∧ ωk ∧ η if j = 2k + 1 is odd.

Identifying the coefficient of degree 1 in t , we get that for all θ ∈ �1
R
n , ω ∈ �2

R
n ,

ζ ∈ i2,

{
ωk−1 ∧ ζ ∧ η = 0 if j = 2k is even

θ ∧ ωk−1 ∧ ζ ∧ η = 0 if j = 2k + 1 is odd.

It then follows from (6.1) when j is even, (6.2) when j is odd, and Lemma 6.4 that
ζ ∧ η ∈ Anhn− j+2� j−2

R
n = {0} for all ζ ∈ i2, i.e., η ∈ Anhn− j i2 = Anhn− j i,

where the last equality comes from (6.9), and this concludes the proof of the lemma.
�

We first prove Theorem 1.2.

Proof of Theorem 1.2 Let g be a step-2 rank-r Carnot algebra that is not isomorphic to
fr . Clearly,

⊕r−1
i=0 Affh(g)i ⊂ Affh(g). To prove the converse inclusion, let π : fr → g

be a surjective Carnot morphism and ν ∈ �r
R
r \ {0} be fixed. Recall for further use

that Ker π is a nontrivial graded ideal of fr . Let f ∈ Affh(g). Then f ◦π ∈ Affh(fn) by
Lemma2.3 and it follows fromTheorem1.1 that there areηi ∈ �r−i

R
r , i ∈ {0, . . . , r},

such that ( f ◦ π)ν = ∑r
i=0 ϕηi . We claim that each ϕηi factors through fr/Ker π .

Indeed, since π commutes with dilations, we have for all (θ, ω) ∈ fr , (τ, ζ ) ∈ Ker π ,
t ∈ R

∗,

r∑

i=0

t iϕηi (θ + τ, ω + ζ ) =
r∑

i=0

(ϕηi ◦ δt )(θ + τ, ω + ζ )

= ( f ◦π ◦δt )(θ+τ, ω+ζ ) ν =( f ◦δt ◦π)(θ+τ, ω + ζ ) ν

= ( f ◦ δt ◦ π)(θ, ω) ν = ( f ◦ π ◦ δt )(θ, ω) ν

=
r∑

i=0

(ϕηi ◦ δt )(θ, ω) =
r∑

i=0

t iϕηi (θ, ω) .
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This implies that for all i ∈ {0, . . . , r},ϕηi (θ+τ, ω+ζ ) = ϕηi (θ, ω) for all (θ, ω) ∈ fr ,
(τ, ζ ) ∈ Ker π , i.e., ϕηi factors through fr/Ker π , as claimed. Since π is surjective, it
follows that for each i ∈ {0, . . . , r} there is fi : g → R such that ( fi ◦π)ν = ϕηi . Since
ϕηi ∈ Affh(fn,�n

R
n)i , we get from Corollary 2.4 that fi ∈ Affh(g)i (note indeed

that the analogue of Corollary 2.4 holds true for �n
R
n-valued functions). Let us now

verify that fr = 0. Since ϕηr factors through fr/Ker π , we know from Lemma 4.1
that ηr ∈ Anh0 Ker π . Since g is not isomorphic to fr , we have Ker π �= {0} and hence
Anh0 Ker π = {0}. Therefore ηr = 0 and hence fr = 0. All together we get that
f = ∑r−1

i=0 fi ∈ ⊕r−1
i=0 Affh(g)i and this concludes the proof of Theorem 1.2. �

We now prove Theorem 1.3

Proof of Theorem 1.3 Letgbe a step-2 rank-r Carnot algebra,n ≥ r , andπ : fn → gbe
a surjective Carnot morphism. Let i ∈ {0, . . . , n}, ν ∈ �n

R
n\{0}, η ∈ Anhn−i Ker π .

Since Ker π is a graded ideal of fn , we know from Lemma 4.1 that ϕη factors through
fn/Ker π and sinceπ is surjectivewe get the existence of a unique function f : g → R

such that ( f ◦ π)ν = ϕη. Furthermore, since ϕη ∈ Affh(fn,�n
R
n)i , we get from

Corollary 2.4 that f ∈ Affh(g)i , which concludes the proof of Theorem 1.3 (i).
Conversely, let f ∈ Affh(g)i . Then f ◦ π ∈ Affh(fn)i by Corollary 2.4 and it follows
fromTheorem 1.1 (ii) that there is a unique η ∈ �n−i

R
n such that ( f ◦π)ν = ϕη. This

equality shows in turn that ϕη factors through fn/Ker π and hence η ∈ Anhn−i Ker π
by Lemma 4.1, which concludes the proof Theorem 1.3 (ii). By linearity of the map
η �→ ϕη, we get that the bijective map η ∈ Anhn−i Ker π �→ f ∈ Affh(g)i where
f is given by Theorem 1.3 (i) is linear and therefore is an isomorphism of vector
spaces, which concludes the proof of Theorem 1.3 (iii). By Theorem 1.1 (i) and
Theorem 1.2, it follows that Affh(g) and

⊕n
i=0 Anh

n−i Ker π are isomorphic as vector
spaces. Finally, since Ker π is a graded ideal of fn , we get from Corollary 6.9 that
AnhKer π = ⊕n

i=0 Anh
n−i Ker π . Therefore Affh(g) and AnhKer π are isomorphic

as vector spaces, which concludes the proof of Theorem 1.3 (iv). �
Remark 4.2 If g is a step-2 rank-r Carnot algebra that is not isomorphic to fr then
dimAffh(g) ≤ 2r − r + 1. Indeed consider a surjective Carnot morphism π : fr → g.
Then Ker π is a nontrivial graded ideal of fr that is contained in �2

R
r . Therefore

Anhr Ker π = �r
R
r by (6.7), Anhr−1 Ker π = Anhr−1{0} = �r−1

R
r where the first

equality follows from (6.8), and Anhr−i Ker π � �r−i
R
r for i ∈ {2, . . . , r −1}. This

latter claim indeed follows from the inclusion Ker π ⊂ �2
R
r together with the fact

that Anh2�r−i
R
r = {0} for i ∈ {2, . . . , r − 1}, see Lemma 6.4. By Theorem 1.3 (iii)

we get that Affh(g)i and �r−i
R
r are isomorphic for i ∈ {0, 1} and dimAffh(g)i ≤

dim�r−i
R
r − 1 for i ∈ {2, . . . , r − 1}. Therefore dimAffh(g) ≤ 2r − r + 1 by

Theorem 1.2.

Remark 4.3 It follows from Theorems 1.1, 1.2, 1.3 (iii), and Lemma 6.11 that if g is a
step-2 Carnot algebra then Affh(g)i = {0} for some non-negative integer i if and only
if

⊕
j≥i Affh(g) j = {0}.

Remark 4.4 Note that it follows from Theorems 1.1 and 1.3 (iii) that if n > r ≥ 2
and π : fn → fr is a surjective Carnot morphism then Anhn−i Ker π = {0} for
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i ∈ {r + 1, . . . , n}. Similarly, it follows from Theorems 1.2 and 1.3 (iii) that if g is a
step-2 rank-r Carnot algebra that is not isomorphic to fr , n ≥ r , and π : fn → g is a
surjective Carnot morphism then Anhn−i Ker π = {0} for i ∈ {r , . . . , n}.

5 Step-2 Carnot AlgebrasWhere Horizontally Affine Functions are
Affine

5.1 Characterization

This section is devoted to the proof of Theorem 1.4 that characterizes step-2 Carnot
algebras where h-affine functions are affine. We begin with an easy consequence of
Theorem 1.3.

Lemma 5.1 Let g be a step-2 Carnot algebra. Then
⊕2

i=0 Affh(g)i = Aff(g).

Proof We already know from Lemma 2.5 that Aff(g) ⊂ ⊕2
i=0 Affh(g)i . Conversely,

let f ∈ ⊕2
i=0 Affh(g)i . Let r := rank g, π : fr → g be a surjective Carnot morphism,

and ν ∈ �r
R
r \ {0}. By Theorem 1.3 (ii) there are ηi ∈ Anhn−i Ker π , i ∈ {0, 1, 2},

such that ( f ◦π)ν = ∑2
i=0 ϕηi . Then it clearly follows from the form of ϕηi , see (1.1),

together with the fact that π is a surjective Carnot morphism that f ∈ Aff(g). �
We now turn to the proof of Theorem 1.4.

Proof of Theorem 1.4 The equivalence between Theorem 1.4 (i) and (ii) follows from
Lemmas 2.5 and 5.1. Next, Theorem 1.4 (ii) clearly implies Theorem 1.4 (iii) since
Affh(g)i are linear subspaces of Affh(g) that are in direct sum, recalling also that⊕

i≥3 Affh(g)i = {0} if and only if Affh(g)3 = {0}, see Remark 4.3.
Now, assume that Affh(g)3 = {0}. Let b : g1×g2 → R be a bilinear form such that

b(x, [x, x ′]) = 0 for all x, x ′ ∈ g1. Identifying gwith g1 × g2, we have for x, x ′ ∈ g1,
z ∈ g2, t ∈ R,

b((x, z) · (t x ′, 0)) = b(x + t x ′, z + t[x, x ′])
= b(x, z) + tb(x ′, z) + tb(x, [x, x ′]) + tb(x ′, [x, x ′])
= b(x, z) + tb(x ′, z)

and b(δt (x, z)) = b(t x, t2z) = t3b(x, z). Therefore b ∈ Affh(g)3 and hence b = 0,
which proves that g is I-null.

Next, assume that g isI-null. Let n ≥ max{3, rank g} andπ : fn → g be a surjective
Carnot morphism and let us verify that Anhn−3 Ker π = {0}. Let ν ∈ �n

R
n \ {0} be

given. By Theorem 1.3 (i), for η ∈ Anhn−3 Ker π there is f ∈ Affh(g)3 such that
( f ◦ π)ν = ϕη. Identifying fn with �1

R
n × �2

R
n , we have ϕη(θ, ω) = θ ∧ ω ∧ η.

Therefore ϕη : �1
R
n × �2

R
n → �n

R
n is bilinear. Since π is a surjective Carnot

morphism, it follows that f : g ∼= g1 × g2 → R is bilinear as well. Furthermore,
for x, x ′ ∈ g1, let θ, θ ′ ∈ �1

R
n be such that x = π(θ), x ′ = π(θ ′). Then [x, x ′] =

π(θ ∧ θ ′) and hence, identifying g with g1 × g2, we have (x, [x, x ′]) = π(θ, θ ∧ θ ′).
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Therefore f (x, [x, x ′])ν = ϕη(θ, θ ∧ θ ′) = 0. Since g is I-null, it follows that f = 0
and hence η = 0 by Corollary 6.5. Therefore Anhn−3 Ker π = {0}, as wanted. Recall
that this is in turn equivalent to

⊕n
i=3 Anh

n−i Ker π = {0} by Lemma 6.11.
To conclude the proof of Theorem 1.4, assume that there are n ≥ max{3, rank g}

and a surjective Carnot morphism π : fn → g such that
⊕n

i=3 Anh
n−i Ker π = {0}.

By Theorem 1.3 (iii) we get that
⊕n

i=3 Affh(g)i = {0} and Theorems 1.1 (i) and 1.2
imply in turn Theorem 1.4 (ii). �

5.2 Examples

In this section, we deduce from Theorem 1.4 sufficient conditions implying that h-
affine functions are affine and necessary conditions that must be satisfied when this
is the case. These conditions may be easier to verify on concrete examples than those
given in the characterization obtained in Theorem 1.4. We, however, illustrate with
explicit examples to what extent some of these easier conditions cannot be turned into
characterizations of step-2 Carnot algebras where h-affine functions are affine. We
shall also see from some of these examples that, unlike affine functions, a h-affine
function defined on a Lie subalgebra of a step-2 Carnot algebra may not admit a
h-affine extension to the whole algebra.

Proposition 5.2 Let g be a step-2 Carnot algebra and assume there is x ∈ g1 such
that adx : y ∈ g1 �→ [x, y] ∈ g2 is surjective. Then Affh(g) = Aff(g).

Proof If adx is surjective for some x ∈ g1 then so is adx ′ for x ′ ∈ U for some
open neighborhood U ⊂ g1 of x . If b : g1 × g2 → R is a bilinear form such that
b(u, [u, v]) = 0 for all u, v ∈ g1 then, by bilinearity of b and surjectivity of adx ′ ,
we get b(x ′, z) = 0 for all x ′ ∈ U , z ∈ g2, and finally b = 0, using once again the
bilinearity of b together with the fact thatU is a nonempty open subset of g1. Therefore
g is I-null and hence Affh(g) = Aff(g) by Theorem 1.4 (i)–(iv). �

Proposition 5.2 applies in particular to step-2 Carnot algebras of Métivier’s type,
i.e., step-2 Carnot algebras where adx is surjective for all x ∈ g1\{0}.

The condition given in Proposition 5.2 about the surjectivity of adx for some x ∈ g1
implying that g is I-null should not be confused with the surjectivity of the Lie bracket
[·, ·] : g1 × g1 → g2. Indeed, step-2 Carnot algebras of Métivier’s type are examples
of I-null Lie algebras where the Lie bracket is surjective, whereas Example 5.3 below
gives an example of a I-null step-2 Carnot algebra where the Lie bracket is not
surjective. On the other hand, free step-2 Carnot algebras of rank 3 or higher are not
I-null whereas the Lie bracket (θ, θ ′) ∈ �1

R
n×�1

R
n �→ θ∧θ ′ ∈ �2

R
n is surjective

if and only if n = 3.

Example 5.3 Let i be the graded ideal of f4 given by i := span{e12 + e34} and let
g := f4/i. Elementary computations show that Anh1i = {0}. Therefore Affh(g) =
Aff(g) and g is I-null by Theorem 1.4 (i)–(iv)–(v). To see that the Lie bracket is not
surjective we identify g with �1

R
4 ⊕ g2 where g2 := {ω ∈ �2

R
4 : ω34 = 0}. The
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only nontrivial bracket relations are given by

[θ, θ ′] = ((θ1θ
′
2 − θ ′

1θ2) − (θ3θ
′
4 − θ ′

3θ4)) e
12 +

∑

13≤i j≤24

(θiθ
′
j − θ ′

i θ j ) e
i j

for θ, θ ′ ∈ �1
R
4 and we claim that

Im[·, ·] ∩ {ω ∈ g2 : ω14 = ω23 = 0} ⊂ {ω ∈ g2 : ω2
12 + 4ω13 ω24 ≥ 0}.

Indeed, let ω = [θ, θ ′] with θ, θ ′ ∈ �1
R
4. Set ui := (θi , θ

′
i ) ∈ R

2 for i = 1, 2, 3, 4.
We have ωi j = det(ui , u j ) for 13 ≤ i j ≤ 24. If u2 = (0, 0) or u4 = (0, 0) then
ω24 = 0 and we obviously have ω2

12 + 4ω13 ω24 = ω2
12 ≥ 0. Assume now that

u2 �= (0, 0), u4 �= (0, 0), and ω14 = ω23 = 0. Then u1 and u4, respectively, u2
and u3, are colinear. Therefore there are s, t ∈ R such that u1 = su4 and u3 = tu2.
Since ω12 = det(u1, u2) − det(u3, u4), we get that ω2

12 + 4ω13 ω24 = ((s + t)2 −
4st) det(u2, u4)2 = (s − t)2 det(u2, u4)2 ≥ 0, as claimed.

Given a step-2 Carnot algebra g, we say that g′ is a quotient of g if g′ is a step-2
Carnot algebra and there is a surjective Carnot morphism π : g → g′.

Proposition 5.4 Let g be a step-2 Carnot algebra such that Affh(g) = Aff(g). Then
Affh(g

′) = Aff(g′) for every quotient g′ of g.

Proof By [11, Lemma 2.3] every quotient of a I-null Lie algebra is I-null and hence
the proposition follows from Theorem 1.4 (i)–(iv). �

Note that it may happen that Aff(g) � Affh(g) while Affh(g′) = Aff(g′) for every
proper quotient g′ of g, i.e., for every quotient of g that is not isomorphic to g. A simple
example is given by the free step-2 rank-3 Carnot algebra f3. Indeed, we know from
Theorem 1.1 that Aff(f3) � Affh(f3), whereas every proper quotient g′ of f3 is either
isomorphic to f2 or has rank 3 and is not isomorphic to f3, therefore Affh(g′) = Aff(g′)
by Theorems 3.2, 1.2, and 1.4 (i)–(ii). See also Example 5.6 for another example that
is not isomorphic to f3.

Note also that since Aff(f3) � Affh(f3), Proposition 5.4 has the following imme-
diate corollary.

Corollary 5.5 Let g be a step-2 Carnot algebra that has f3 as one of its quotients. Then
Aff(g) � Affh(g).

It may happen that Aff(g) � Affh(g)while g does not have f3 as one of its quotients,
as shows Example 5.6 where g is a step-2 rank-5 Carnot algebra such that Aff(g) �

Affh(g) and Affh(g′) = Aff(g′) for every proper quotient g′ of g.

Example 5.6 Let i be the graded ideal of f5 given by i := Anh2{ζ } where ζ :=
e12 + e45 and let g := f5/i so that g is in particular a step-2 rank-5 Carnot algebra and
therefore is not isomorphic to f3. We have ζ ∈ Anh2i and hence Aff(g) � Affh(g) by
Theorem 1.4 (i)–(v). We now claim that Affh(g′) = Aff(g′) for every proper quotient
g′ of g. Indeed, let g′ be a proper quotient of g and let π : g → g′ be a surjective
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Carnot morphism. Let π : f5 → g denote the quotient map so that π ◦ π : f5 → g′
is a surjective Carnot morphism and let us verify that Anh2 Ker π ◦ π = {0}. Let
η ∈ Anh2 Ker π ◦ π . We have Anh1{ζ } ⊕ Anh2{ζ } = {0} ⊕ Anh2{ζ } = Ker π ⊂
Ker π ◦π ⊂ Anh1{η}⊕Anh2{η}. SinceAnh2{ζ } = span{e12−e45, e14, e15, e24, e25},
we have (e12 − e45) ∧ η = 0, implying η34 = η35 = η45 − η12 = η13 = η23 = 0, and
ei j ∧ η = 0 for i = 1, 2, j = 4, 5, implying ηi j = 0 for i = 1, 2, j = 4, 5. Therefore
η ∈ span{ζ }. If η �= 0 then Anh1{η}⊕Anh2{η} = Anh1{ζ }⊕Anh2{ζ }which implies
in turn Ker π = Ker π ◦ π and therefore Ker π = {0}. This contradicts the fact that
g′ is a proper quotient of g and hence η = 0. Therefore Anh2 Ker π ◦ π = {0} and it
follows from Theorem 1.4 (i)–(v) that Affh(g′) = Aff(g′), as claimed.

We recall that the direct product g× R
d of a step-2 Carnot algebra with an abelian

Lie algebra and the direct product g× g′ of step-2 Carnot algebras inherit naturally of
a structure of step-2 Carnot algebra from those of g and g′.

Proposition 5.7 Let g, g′ be a step-2 Carnot algebras and d ≥ 1 be an integer. Then
the following hold true:

(i) Affh(g×g′) = Aff(g×g′) if and only if Affh(g) = Aff(g) and Affh(g
′) = Aff(g′)

(ii) Affh(g × R
d) = Aff(g × R

d) if and only if Affh(g) = Aff(g).

Proof By [11, Lemma 2.3], any finite direct product of I-null Lie algebras is I-null.
Therefore it follows from Theorem 1.4 (i)–(iv) that Affh(g × g′) = Aff(g × g′)
whenever Affh(g) = Aff(g) and Affh(g′) = Aff(g′). Similarly, since abelian Lie
algebras areI-null (seeDefinition 2.6),wehaveAffh(g×R

d) = Aff(g×R
d)whenever

Affh(g) = Aff(g). The converse implications in (i) and (ii) follow fromProposition 5.4
noting that the projection maps from g × g′ onto either g or g′ and from g × R

d onto
g are surjective Carnot morphisms. �

The next proposition is another simple consequence of Theorem 1.4 that gives a
sufficient condition ensuring that h-affine maps are affine.

Proposition 5.8 Let g be a step-2 Carnot algebra such that Aff(g) � Affh(g). Then
there is a Lie subalgebra of g isomorphic to f3.

Proof By Theorem 1.4 (i)–(iv) we know that g is not I-null. Then let b : g1×g2 → R

be a non-zero bilinear form such that b(x, [x, x ′]) = 0 for all x, x ′ ∈ g1. Since b �= 0,
there are x ∈ g1, z ∈ g2 such that b(x, z) �= 0. By bilinearity together with the fact that
[g1, g1] = g2, it follows that there are x1, x2, x3 ∈ g1 such that b(x1, [x2, x3]) = 1.
We claim that [x1, x2], [x1, x3], [x2, x3] are linearly independent and therefore the
Lie subalgebra of g generated by x1, x2, x3 is isomorphic to f3. Indeed, note that
since b(x, [x, x ′]) = 0 for all x, x ′ ∈ g1, the trilinear form (x, x ′, x ′′) ∈ g1 × g1 ×
g1 �→ b(x, [x ′, x ′′]) is alternating and therefore b(x3, [x1, x2]) = −b(x2, [x1, x3]) =
b(x1, [x2, x3]) = 1. Now let s1, s2, s3 ∈ R be such that s3[x1, x2] + s2[x1, x3] +
s1[x2, x3] = 0. For i ∈ {1, 2, 3}, we have b(xi , s3[x1, x2]+ s2[x1, x3]+ s1[x2, x3]) =
si b(xi , [xk, xl ]) = 0 where k < l and {k, l} = {1, 2, 3}\{i}. Since b(xi , [xk, xl ]) �= 0
for such indices i, k, l, it follows that s1 = s2 = s3 = 0, which concludes the proof
of the lemma. �
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We stress that I-null step-2 Carnot algebras may have Lie subalgebras isomorphic
to f3, as shown in the following two examples.

Example 5.9 [The quaternionic Heisenberg algebra.] Let i, j, k denote the quaternion
units satisfying i2 = j2 = k2 = i jk = −1 and denote byH := {q1+iq2+ jq3+kq4 :
qi ∈ R} the set of quaternions. Given q = q1 + iq2 + jq3 + kq4 ∈ H, denote by
Im q := iq2+ jq3+kq4 its imaginary part and q := q1−iq2− jq3−kq4 its conjugate.
EquipH⊕ImHwith theLie bracket forwhich the only nontrivial relations are given by
[q, q ′] := Im(q q ′) forq, q ′ ∈ HwhichmakesH⊕ImH a step-2Carnot algebra that is
well known to be of Heisenberg type, and therefore ofMétivier’s type (see for instance
[9]). Therefore, we haveAffh(H⊕ImH) = Aff(H⊕ImH) and H⊕ImH isI-null by
Proposition 5.2. We now claim that the Lie subalgebra ofH⊕ ImH generated by any
three linearly independent elements in H is isomorphic to f3. Indeed, for q, q ′ ∈ H,
we have [q, q ′] = 0 if and only if q and q ′ are colinear. This indeed follows from
the fact that for q ∈ H\{0}, the linear map adq : q ′ ∈ H �→ [q, q ′] ∈ ImH is
surjective with q ∈ Ker adq , together with the fact that dimH = 4 and dim ImH = 3.
Then let q1, q2, q3 ∈ H be linearly independent and assume by contradiction that
dim span{[qi , q j ] : i, j ∈ {1, 2, 3}} ≤ 2.Exchanging the role ofq1, q2, q3 if necessary,
there are s, t ∈ R such that [q2, q3] = s[q1, q2]+t[q1, q3]. Then [q2−tq1, sq1+q3] =
0 which implies that q2 − tq1 and sq1 + q3 are colinear and contradicts the fact that
q1, q2, q3 are linearly independent. Therefore dim span{[qi , q j ] : i, j ∈ {1, 2, 3}} = 3
and the Lie subalgebra generated by q1, q2, q3 is isomorphic to f3, as claimed.

Example 5.10 Let g := f4/i where i := span{e12 + e34} be the I-null step-2 Carnot
algebra given by Example 5.3. We claim that the Lie subalgebra of g generated by
any three linearly independent elements in �1

R
4 is isomorphic to f3. Indeed let π :

f4 → g denote the quotient map. Let θ1, θ2, θ3 ∈ �1
R
4 be linearly independent and

let a, b, c ∈ R be such that a π(θ1 ∧ θ2) + b π(θ1 ∧ θ3) + c π(θ2 ∧ θ3) = 0, i.e.,
a θ1 ∧ θ2 + b θ1 ∧ θ3 + c θ2 ∧ θ3 ∈ Ker π . We have (a θ1 ∧ θ2 + b θ1 ∧ θ3 + c θ2 ∧
θ3)

2 = 0 while Ker π = span{e12 + e34} with (e12 + e34)2 �= 0. It follows that
a θ1 ∧ θ2 + b θ1 ∧ θ3 + c θ2 ∧ θ3 = 0 and hence a = b = c = 0. This proves that
dim span{π(θi ∧ θ j ) : i, j ∈ {1, 2, 3}} = 3 and therefore the Lie subalgebra of g
generated by θ1, θ2, θ3 is isomorphic to f3, as claimed.

Theorem 1.4 (i)–(iv) together with Proposition 5.8 has the following immediate
consequence.

Proposition 5.11 Let g be a step-2 Carnot algebra with dim g2 ≤ 2. Then Affh(g) =
Aff(g).

If rank g = dim g2 = 3 then g is isomorphic to f3 and therefore Aff(g) � Affh(g).
This fact generalizes to higher rank step-2 Carnot algebras g with dim g2 = 3 in the
following way.

Proposition 5.12 Let g be a step-2 Carnot algebra with dim g2 = 3. Then Affh(g) =
Aff(g) if and only if g is not isomorphic to f3 × R

d for some non-negative integer d.
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Proof If g is isomorphic to the direct product f3 × R
d for some non-negative inte-

ger d then g has f3 as one of its quotients and we know by Corollary 5.5 that
Aff(g) � Affh(g). Conversely, assume that Aff(g) � Affh(g). First, if rank g = 3,
since dim g2 = 3, then g is isomorphic to f3. Next, assume that r := rank g ≥ 4. By
Proposition 5.8, there are x1, x2, x3 ∈ g1 generating a Lie subalgebra of g isomor-
phic to f3 and there is a bilinear form b : g1 × g2 → R such that b(x, [x, x ′]) = 0
for all x, x ′ ∈ g1 and b(x1, [x2, x3]) = 1. Set V := span{x1, x2, x3}. We claim
that for every x ∈ g1\V , there is x ′ ∈ V such that x + x ′ lies in the center
of g, i.e., [y, x + x ′] = 0 for all y ∈ g1. To prove this claim, let x ∈ g1 \ V
be given. Since dim g2 = 3 = dim span{[xi , x j ] : 1 ≤ i < j ≤ 3}, there are

x j
i ∈ R, i, j ∈ {1, 2, 3}, such that [x j , x] = x j

3 [x1, x2] − x j
2 [x1, x3] + x j

1 [x2, x3] for
j ∈ {1, 2, 3}. Set x ′ := x23 x1+ x31 x2 + x12 x3 and let us verify that x + x ′ ∈ Center(g).
We first verify that [x j , x + x ′] = 0 for j ∈ {1, 2, 3}. Since b(x, [x, x ′]) = 0
for all x, x ′ ∈ g1, the bilinear form (y, y′) ∈ V × V �→ b(y, [y′, x]) is skew-
symmetric. For y = ∑

1≤i≤3 αi xi ∈ V and y′ = ∑
1≤ j≤3 β j x j ∈ V , we have

b(y, [y′, x]) = ∑
1≤i, j≤3 x

j
i αi β j . By skew-symmetry, we get x j

i = −xij for
i, j ∈ {1, 2, 3} and it follows that [x j , x + x ′] = 0 for j ∈ {1, 2, 3}. Now let y ∈ g1
and write [y, x + x ′] = s3 [x1, x2] − s2 [x1, x3] + s1 [x2, x3] with si ∈ R. Since the
trilinear form b(·, [·, ·]) is alternating, we have b(xi , [y, x + x ′]) = si . On the other
hand, b(xi , [y, x + x ′]) = −b(y, [xi , x + x ′]) = 0. Hence si = 0 for i ∈ {1, 2, 3}
and therefore [y, x + x ′] = 0, as wanted. It now clearly follows from this claim
that one can complete (x1, x2, x3) into a basis (x1, . . . , xr ) of g1 in such a way that
x4, . . . , xr ∈ Center(g), i.e., g is isomorphic to f3 × R

r−3. �

To conclude this section, let us remark that a h-affine function defined on a Lie
subalgebra of a step-2 Carnot algebra may not admit a h-affine extension to the whole
algebra. Indeed, let g be a step-2 Carnot algebra such that Affh(g) = Aff(g) and such
that there is a Lie subalgebra f of g isomorphic to f3, see Examples 5.9 and 5.10.
Then Aff(f) � Affh(f) and therefore there is h ∈ Affh(f) \ Aff(f). Assume there is
h ∈ Affh(g) whose restriction to f is h. By assumption on g, we have h ∈ Aff(g).
Since f is a linear subspace of g, it follows that the restriction of h to f is affine, i.e.,
h ∈ Aff(f), which gives a contradiction. Recall that on the contrary an affine function
defined on an affine subspace of a vector space can always be extended to an affine
function on the whole space.

6 Appendix About Linear and Exterior Algebra

We gather in this appendix some basic facts about linear and exterior algebra not
pertaining to h-affine functions that have been used in the previous sections.

We start with a characterization of affine maps between real vector spaces whose
elementary proof is left to the reader.

Proposition 6.1 Let E, F be real vector spaces. A map f : E → F is affine if and
only if for every x, y ∈ E, the map t ∈ R �→ f (x + t y) is affine.
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For the sake of completeness, we state below an elementary property of multiaffine
functions that has been used in the proof of Proposition 3.4. The proof can easily be
done by induction on the dimension and is left to the reader.

Proposition 6.2 Let p ≥ 1 be an integer and E be a p-dimensional real vector space.
Let f : E → R and assume that there is a basis (e1, . . . , ep) of E such that the
map t ∈ R �→ f (v + te j ) is affine for every v ∈ E and j ∈ {1, . . . , p}. Then f is
a linear combination of the u J , where J ranges over the subsets of {1, . . . , p} and
uJ (v) := ∏

j∈J v j for v = ∑p
j=1 v j e j with the convention u∅(v) := 1.

The rest of this appendix is devoted to (basic) facts about exterior algebra that have
been used throughout this paper. Although some of them look quite elementary, we
were, however, unable to find references in the literature and thus provide proofs for
the reader’s convenience.

Given integers n ≥ 1 and k ≥ 1, we denote by �k
R
n the set of alternating k-

multilinear forms over R
n . For k = 0, we set �0

R
n := R. We denote by �∗

R
n :=⊕

k≥0 �k
R
n the exterior algebra equipped with exterior product ∧. We recall that

�k
R
n = {0} if k > n. For ζ ∈ �∗

R
n , we set ζ 0 := 1 and ζ k := ζ ∧ · · · ∧ ζ︸ ︷︷ ︸

k times

for

k ≥ 1.

Lemma 6.3 For n ≥ 1, we have in �∗
R
n

span{ωk : ω ∈ �2
R
n} = �2k

R
n , (6.1)

span{θ ∧ ωk : θ ∈ �1
R
n, ω ∈ �2

R
n} = �2k+1

R
n (6.2)

for all k ≥ 0.

Proof We only need to consider the nontrivial cases where n ≥ 2 and 1 ≤ k ≤ �n/2�.
Then (6.1) and (6.2) follow from the identity

(θ1 ∧ θ2 + · · · + θ2k−1 ∧ θ2k)
k = k! θ1 ∧ · · · ∧ θ2k (6.3)

for all θ1, . . . , θ2k ∈ �1
R
n . �

Given n ≥ 1, we set J n
0 := {∅},

J n
k := {( j1, . . . , jk) ∈ N

k : 1 ≤ j1 < · · · < jk ≤ n} (6.4)

for k ∈ {1, . . . , n}, and J n := ∪0≤k≤nJ n
k . We write im ∅ := ∅ and im J :=

{ j1, . . . , jk} ⊂ N for J = ( j1, . . . , jk) ∈ J n
k . Given J , J ′ ∈ J n , we denote

by J\J ′ the unique element in J n such that im(J\J ′) = im J\ im J ′ and we set
J c := (1, . . . , n)\J . We fix a basis (e1, . . . , en) of R

n and denote by (e1, . . . , en) its
dual basis. For J = ( j1, . . . , jk) ∈ J n

k , we set e
J := e j1 ∧ · · · ∧ e jk ∈ �k

R
n with the

convention e∅ := 1.
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The space of exterior annihilators of an element in �i
R
n of some given order k has

been introduced in [7], see also [6, Section 2.2]. More generally, given n ≥ 1, k ≥ 0,
and A ⊂ �∗

R
n , we define the annihilator of A in �∗

R
n , respectively, �k

R
n , as

AnhA := {η ∈ �∗
R
n : η ∧ ζ = 0 for all ζ ∈ A} , (6.5)

Anhk A := �k
R
n ∩ AnhA . (6.6)

We also set �≥k
R
n := ⊕

i≥k �i
R
n .

Lemma 6.4 For n ≥ 1, k ∈ {0, . . . , n}, we have Anh�k
R
n = �≥n−k+1

R
n.

Proof For k = 0, we clearly have Anh�0
R
n = {0} = �≥n+1

R
n . Let n ≥ 1 and k ∈

{1, . . . , n}begiven.Clearly�≥n−k+1
R
n ⊂ Anh�k

R
n . SinceAnh�k

R
n is graded, i.e.,

Anh�k
R
n = ⊕

i≥0 Anh
i�k

R
n (see Lemma 6.8), if equality fails then Anhi�k

R
n �=

{0} for some i ∈ {0, . . . , n − k}. Let η ∈ Anhi�k
R
n\{0} and J = ( j1, . . . , ji ) ∈ J n

i
be such that η(e j1, . . . , e ji ) �= 0. Then η ∧ eJ

c = η(e j1, . . . , e ji ) e
J ∧ eJ

c �= 0.
However, we can write eJ

c = eJ1 ∧ eJ2 for some J1 ∈ J n
k , J2 ∈ J n

n−i−k , and since

η ∈ Anh�k
R
n , we get η ∧ eJ

c = 0, which gives a contradiction. �
WritingF(A, B) to denote the set ofmaps f : A → B wededuce fromLemmas 6.3

and 6.4 the following corollary.

Corollary 6.5 For k ∈ {0, . . . , �n/2�}, the linear map �n−2k
R
n → F(�2

R
n,�n

R
n)

given by η �→ (ω �→ ωk ∧ η) is injective. For k ∈ {0, . . . , �(n − 1)/2�}, the linear
map �n−2k−1

R
n → F(�1

R
n ×�2

R
n,�n

R
n) given by η �→ ((θ, ω) �→ θ ∧ωk ∧η)

is injective.

Proof By linearity we only need to verify that these maps have trivial kernel. Let
k ∈ {0, . . . , �n/2�} andη ∈ �n−2k

R
n be such thatωk∧η = 0 for allω ∈ �2

R
n .On the

one hand, by (6.1) we have η ∈ Anhn−2k�2k
R
n . On the other hand, by Lemma 6.4, we

have Anhn−2k�2k
R
n = {0}. Therefore η = 0. Similarly, for k ∈ {0, . . . , �(n−1)/2�}

and η ∈ �n−2k−1
R
n such that θ ∧ ωk ∧ η = 0 for all (θ, ω) ∈ �1

R
n × �2

R
n , we

have by (6.2) and Lemma 6.4 that η ∈ Anhn−2k−1�2k+1
R
n = {0}. �

The next proposition played a key role at the end of the proof of Proposition 3.5.

Proposition 6.6 For n ≥ 1 the following holds. Let k ∈ {1, . . . , n} and η : �1
R
n →

�k
R
n be linear. Assume that θ∧η(θ) = 0 for all θ ∈ �1

R
n. Then there is η ∈ �k−1

R
n

such that η(θ) = θ ∧ η for all θ ∈ �1
R
n.

Proof When k = n every map η : �1
R
n → �n

R
n satisfies the assumption θ ∧η(θ) =

0 for all θ ∈ �1
R
n . If η : �1

R
n → �n

R
n is in addition assumed to be linear and

η j ∈ R is such thatη(e j ) = η j e(1,...,n), thenη(θ) = θ∧η for all θ ∈ �1
R
n whereη :=∑n

j=1 σ j η j e(1,...,n)\( j) and σ j ∈ {−1, 1} is such that e(1,...,n) = σ j e j ∧ e(1,...,n)\( j).
Let us now argue by induction on n. First, if n = 1, the conclusion follows from

the previous remark. Next, let n ≥ 2. By the previous remark, we only need to
consider the case where k ∈ {1, . . . , n − 1}. By linearity of η, we only need to
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prove that there is η ∈ �k−1
R
n such that η(e j ) = e j ∧ η for j ∈ {1, . . . , n}. Set

Vj := {x ∈ R
n : e j (x) = 0} for j ∈ {1, . . . , n}.

For j ∈ {1, . . . , n−1}, since e j ∧η(e j ) = 0, we canwrite η(e j ) = e j ∧η j for some
η j ∈ �k−1Vj . Next, write η j = τ j ∧en +ζ j for some τ j ∈ �k−2Vn and ζ j ∈ �k−1Vn
(when k = 1, τ j = 0). Define τ : �1Vn → �k−1Vn and ζ : �1Vn → �kVn to be
linear and such that τ(e j ) = e j ∧τ j and ζ (e j ) = e j ∧ζ j for all j ∈ {1, . . . , n−1}. For
θ ∈ �1Vn , we haveη(θ) = τ(θ)∧en+ζ (θ). Thus θ∧η(θ) = θ∧τ(θ)∧en+θ∧ζ (θ) =
0 for all θ ∈ �1Vn and this implies in turn that θ ∧ τ(θ) = 0 and θ ∧ ζ (θ) = 0 for
all θ ∈ �1Vn . By induction, there are τ ∈ �k−2Vn (again τ = 0 when k = 1) and
ζ ∈ �k−1Vn such that τ(θ) = θ ∧ τ and ζ (θ) = θ ∧ ζ for all θ ∈ �1Vn . It follows
that η(θ) = θ ∧ (τ ∧ en + ζ ) for all θ ∈ �1Vn . We set η := τ ∧ en + ζ ∈ �k−1

R
n .

To conclude the proof of the proposition, it remains to verify that η(en) = en ∧ η.
Since 1 ≤ k ≤ n − 1, this is equivalent to showing that e j ∧ η(en) = e j ∧ en ∧ η

for all j ∈ {1, . . . , n}, see Lemma 6.4. By assumption, we have θ ∧ η(θ) = 0 for all
θ ∈ �1

R
n and therefore θ ∧ η(θ ′) + θ ′ ∧ η(θ) = 0 for all θ, θ ′ ∈ �1

R
n . It follows

that e j ∧ η(en) = −en ∧ η(e j ) = −en ∧ e j ∧ η = e j ∧ en ∧ η for j ∈ {1, . . . , n − 1}.
Since en ∧η(en) = 0 = en ∧ en ∧η, we finally get η(en) = en ∧η, and this concludes
the proof of the proposition. �

Recall that a graded ideal i of fn can be seen as a linear subspace of �∗
R
n of the

form i = i1 ⊕ i2 where i1, i2 are linear subspaces of, respectively, �1
R
n,�2

R
n such

that θ ∧ θ ′ ∈ i2 for all θ ∈ �1
R
n , θ ′ ∈ i1. The structure of annihilators of such subsets

of �∗
R
n , and in particular Corollary 6.9 and Lemma 6.10, played a major role in

Sect. 4. Before proving Corollary 6.9 and Lemma 6.10, we first state two elementary
lemmas. The easy proof of Lemma 6.7 is left to the reader.

Lemma 6.7 Let V ,W be linear subspaces of �∗
R
n that are in direct sum. Then

Anh(V ⊕ W ) = AnhV ∩ AnhW and Anhk(V ⊕ W ) = AnhkV ∩ AnhkW for all
k ≥ 0.

Lemma 6.8 Let n ≥ 1, j ≥ 0, A ⊂ � j
R
n. Then AnhA = ⊕

k≥0 Anh
k A.

Proof Clearly,
⊕

k≥0 Anh
k A ⊂ AnhA. Conversely, let η = ∑n

k=0 ηk ∈ AnhA where
ηk ∈ �k

R
n . For a ∈ A, we have

∑n
k=0 ηk ∧ a = 0 with ηk ∧ a ∈ �k+ j

R
n therefore

ηk ∧ a = 0 for all k ∈ {0, . . . , n}. Since this holds true for all a ∈ A, we get that
ηk ∈ Anhk A for all k ∈ {0, . . . , n}, and therefore η ∈ ⊕

k≥0 Anh
k A. �

Corollary 6.9 Let i1, i2 be linear subspaces of, respectively, �1
R
n,�2

R
n. Then

Anh(i1 ⊕ i2) = ⊕
k≥0 Anh

k(i1 ⊕ i2).

Proof By Lemmas 6.7 and 6.8, we have

Anh(i1 ⊕ i2) = Anhi1 ∩ Anhi2 = (⊕k≥0 Anh
k i1) ∩ (⊕k≥0 Anh

k i2)

= ⊕k≥0 Anh
k i1 ∩ Anhk i2 = ⊕k≥0 Anh

k(i1 ⊕ i2) .

�
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Lemma 6.10 Let n ≥ 2, i1, i2 be linear subspaces of, respectively, �1
R
n,�2

R
n such

that θ ∧ θ ′ ∈ i2 for all θ ∈ �1
R
n, θ ′ ∈ i1. Then

Anhn(i1 ⊕ i2) = �n
R
n, (6.7)

Anhn−1(i1 ⊕ i2) = Anhn−1i1, (6.8)

Anhn−i (i1 ⊕ i2) = Anhn−i i2 for i ∈ {2, . . . , n}. (6.9)

Proof Clearly, Anhn A = �n
R
n for all A ⊂ �≥1

R
n and (6.7) follows. By Lemma 6.7,

we have Anhn−1(i1 ⊕ i2) = Anhn−1i1 ∩ Anhn−1i2. For A ⊂ �≥2
R
n , we have

Anhn−1A = �n−1
R
n therefore Anhn−1i2 = �n−1

R
n and (6.8) follows. For

i ∈ {2, . . . , n}, clearly Anhn−i (i1 ⊕ i2) ⊂ Anhn−i i2. Conversely, let η ∈ Anhn−i i2
and θ ∈ i1. By assumption, θ ∧θ ′ ∈ i2 for all θ ′ ∈ �1

R
n . Therefore η∧θ ∧θ ′ = 0 for

all θ ′ ∈ �1
R
n , i.e., η ∧ θ ∈ Anhn−i+1�1

R
n = �n−i+1

R
n ∩ �≥n

R
n , where the last

equality follows from Lemma 6.4. Since i ∈ {2, . . . , n}, we have n − i + 1 ≤ n − 1,
therefore �n−i+1

R
n ∩ �≥n

R
n = {0} and hence η ∧ θ = 0. Since this holds true for

all θ ∈ i1, we get that η ∈ Anhn−i i1 ∩ Anhn−i i2 = Anhn−i (i1 ⊕ i2), where the last
equality comes from Lemma 6.7 and concludes the proof of (6.9). �

We end this section with an observation that has been useful for our purposes in
Remark 4.3 and Sect. 5.

Lemma 6.11 Let n ≥ 1, k ∈ {0, . . . , n}, A ⊂ �∗
R
n be such that Anhk A = {0}. Then

Anh j A = {0} for all j ∈ {0, . . . , k}.
Proof Let j ∈ {0, . . . , k},η ∈ Anh j A. For all ζ ∈ �k− j

R
n ,a ∈ A,we have ζ∧η∧a =

0, i.e., ζ ∧ η ∈ Anhk A. Since Anhk A = {0}, it follows that η ∈ Anh j�k− j
R
n =

� j
R
n∩�≥n−k+ j+1

R
n , where the last equality follows fromLemma6.4. Since n−k ≥

0, we have n − k + j + 1 ≥ j + 1, therefore � j
R
n ∩ �≥n−k+ j+1

R
n = {0} and hence

Anh j A = {0}. �
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