Horizontally Affine Functions on Step-2 Carnot Algebras
Le Donne, E., Morbidelli, D., & Rigot, S. (2023). Horizontally Affine Functions on Step-2 Carnot Algebras. Journal of Geometric Analysis, 33(11), Article 359. https://doi.org/10.1007/s12220-023-01360-4
Julkaistu sarjassa
Journal of Geometric AnalysisPäivämäärä
2023Oppiaine
Geometrinen analyysi ja matemaattinen fysiikkaMatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköGeometric Analysis and Mathematical PhysicsMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© The Author(s) 2023
In this paper, we introduce the notion of horizontally affine, h-affine in short, function and give a complete description of such functions on step-2 Carnot algebras. We show that the vector space of h-affine functions on the free step-2 rank-n Carnot algebra is isomorphic to the exterior algebra of Rn. Using that every Carnot algebra can be written as a quotient of a free Carnot algebra, we shall deduce from the free case a description of h-affine functions on arbitrary step-2 Carnot algebras, together with several characterizations of those step-2 Carnot algebras where h-affine functions are affine in the usual sense of vector spaces. Our interest for h-affine functions stems from their relationship with a class of sets called precisely monotone, recently introduced in the literature, as well as from their relationship with minimal hypersurfaces.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
1050-6926Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/184914332
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open Access funding provided by University of Jyväskylä (JYU).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Semigenerated Carnot algebras and applications to sub-Riemannian perimeter
Le Donne, Enrico; Moisala, Terhi (Springer, 2021)This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our ... -
Polynomial and horizontally polynomial functions on Lie groups
Antonelli, Gioacchino; Le Donne, Enrico (Springer, 2022)We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset S of the algebra g of left-invariant vector fields on a Lie group G and we ... -
A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
Le Donne, Enrico (De Gruyter Open, 2017)Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with ... -
Space of signatures as inverse limits of Carnot groups
Le Donne, Enrico; Züst, Roger (EDP Sciences, 2021)We formalize the notion of limit of an inverse system of metric spaces with 1-Lipschitz projections having unbounded fibers. The construction is applied to the sequence of free Carnot groups of fixed rank n and increasing ... -
Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups
Carbotti, Alessandro; Don, Sebastiano; Pallara, Diego; Pinamonti, Andrea (EDP Sciences, 2021)We prove the local minimality of halfspaces in Carnot groups for a class of nonlocal functionals usually addressed as nonlocal perimeters. Moreover, in a class of Carnot groups in which the De Giorgi’s rectifiability theorem ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.