Show simple item record

dc.contributor.authorTikka, Santtu
dc.contributor.authorHelske, Jouni
dc.contributor.authorKarvanen, Juha
dc.date.accessioned2023-09-19T08:28:46Z
dc.date.available2023-09-19T08:28:46Z
dc.date.issued2023
dc.identifier.citationTikka, S., Helske, J., & Karvanen, J. (2023). Clustering and Structural Robustness in Causal Diagrams. <i>Journal of Machine Learning Research</i>, <i>24</i>, Article 195. <a href="https://jmlr.org/papers/v24/21-1322.html" target="_blank">https://jmlr.org/papers/v24/21-1322.html</a>
dc.identifier.otherCONVID_184925714
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/89169
dc.description.abstractGraphs are commonly used to represent and visualize causal relations. For a small number of variables, this approach provides a succinct and clear view of the scenario at hand. As the number of variables under study increases, the graphical approach may become impractical, and the clarity of the representation is lost. Clustering of variables is a natural way to reduce the size of the causal diagram, but it may erroneously change the essential properties of the causal relations if implemented arbitrarily. We define a specific type of cluster, called transit cluster, that is guaranteed to preserve the identifiability properties of causal effects under certain conditions. We provide a sound and complete algorithm for finding all transit clusters in a given graph and demonstrate how clustering can simplify the identification of causal effects. We also study the inverse problem, where one starts with a clustered graph and looks for extended graphs where the identifiability properties of causal effects remain unchanged. We show that this kind of structural robustness is closely related to transit clusters.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJMLR
dc.relation.ispartofseriesJournal of Machine Learning Research
dc.relation.urihttps://jmlr.org/papers/v24/21-1322.html
dc.rightsCC BY 4.0
dc.subject.othercausal inference
dc.subject.othergraph theory
dc.subject.otheralgorithm
dc.subject.otheridentifiability
dc.subject.otherdirected acyclic graph
dc.titleClustering and Structural Robustness in Causal Diagrams
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202309195186
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1532-4435
dc.relation.volume24
dc.type.versionpublishedVersion
dc.rights.copyright©2023 Santtu Tikka, Jouni Helske, Juha Karvanen
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber331817
dc.relation.grantnumber311877
dc.subject.ysokausaliteetti
dc.subject.ysoalgoritmit
dc.subject.ysograafit (verkkoteoria)
dc.subject.ysoklusterit
dc.subject.ysodiagrammit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p333
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p26018
jyx.subject.urihttp://www.yso.fi/onto/yso/p18755
jyx.subject.urihttp://www.yso.fi/onto/yso/p5568
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramProfilointi, SAfi
jyx.fundinginformationThis work was supported by Academy of Finland grant numbers 311877 and 331817.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0