Simplifying Probabilistic Expressions in Causal Inference
Tikka, S., & Karvanen, J. (2017). Simplifying Probabilistic Expressions in Causal Inference. Journal of Machine Learning Research, 18, 1-30. http://jmlr.csail.mit.edu/papers/volume18/16-166/16-166.pdf
Julkaistu sarjassa
Journal of Machine Learning ResearchPäivämäärä
2017Tekijänoikeudet
© 2017 Santtu Tikka and Juha Karvanen. This is an open access article distributed under the terms of a Creative Commons License.
Obtaining a non-parametric expression for an interventional distribution is one of the most
fundamental tasks in causal inference. Such an expression can be obtained for an identifiable
causal effect by an algorithm or by manual application of do-calculus. Often we are left
with a complicated expression which can lead to biased or inefficient estimates when missing
data or measurement errors are involved.
We present an automatic simplification algorithm that seeks to eliminate symbolically
unnecessary variables from these expressions by taking advantage of the structure of the
underlying graphical model. Our method is applicable to all causal effect formulas and is
readily available in the R package causaleffect.
Julkaisija
MIT PressISSN Hae Julkaisufoorumista
1532-4435Asiasanat
Alkuperäislähde
http://jmlr.csail.mit.edu/papers/volume18/16-166/16-166.pdfJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26991481
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Ellei muuten mainita, aineiston lisenssi on © 2017 Santtu Tikka and Juha Karvanen. This is an open access article distributed under the terms of a Creative Commons License.
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Clustering and Structural Robustness in Causal Diagrams
Tikka, Santtu; Helske, Jouni; Karvanen, Juha (JMLR, 2023)Graphs are commonly used to represent and visualize causal relations. For a small number of variables, this approach provides a succinct and clear view of the scenario at hand. As the number of variables under study ... -
Evolutionary game theory of continuous traits from a causal perspective
Lehtonen, Jussi; Otsuka, Jun (The Royal Society Publishing, 2023)Modern evolutionary game theory typically deals with the evolution of continuous, quantitative traits under weak selection, allowing the incorporation of rich biological detail and complicated nonlinear interactions. While ... -
The choice of control variables in empirical management research : How causal diagrams can inform the decision
Hünermund, Paul; Louw, Beyers; Rönkkö, Mikko (Elsevier, 2024)The Leadership Quarterly and the management community more broadly prioritize identifying causal relationships to inform effective leadership practices. Despite the availability of more refined causal identification ... -
Enhancing Identification of Causal Effects by Pruning
Tikka, Santtu; Karvanen, Juha (MIT Press, 2018)Causal models communicate our assumptions about causes and e ects in real-world phenomena. Often the interest lies in the identification of the e ect of an action which means deriving an expression from the observed ... -
Causality-Aware Convolutional Neural Networks for Advanced Image Classification and Generation
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2023)Smart manufacturing uses emerging deep learning models, and particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), for different industrial diagnostics tasks, e.g., classification, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.