Clustering and Structural Robustness in Causal Diagrams
Tikka, S., Helske, J., & Karvanen, J. (2023). Clustering and Structural Robustness in Causal Diagrams. Journal of Machine Learning Research, 24, Article 195. https://jmlr.org/papers/v24/21-1322.html
Julkaistu sarjassa
Journal of Machine Learning ResearchPäivämäärä
2023Tekijänoikeudet
©2023 Santtu Tikka, Jouni Helske, Juha Karvanen
Graphs are commonly used to represent and visualize causal relations. For a small number of variables, this approach provides a succinct and clear view of the scenario at hand. As the number of variables under study increases, the graphical approach may become impractical, and the clarity of the representation is lost. Clustering of variables is a natural way to reduce the size of the causal diagram, but it may erroneously change the essential properties of the causal relations if implemented arbitrarily. We define a specific type of cluster, called transit cluster, that is guaranteed to preserve the identifiability properties of causal effects under certain conditions. We provide a sound and complete algorithm for finding all transit clusters in a given graph and demonstrate how clustering can simplify the identification of causal effects. We also study the inverse problem, where one starts with a clustered graph and looks for extended graphs where the identifiability properties of causal effects remain unchanged. We show that this kind of structural robustness is closely related to transit clusters.
...
Julkaisija
JMLRISSN Hae Julkaisufoorumista
1532-4435Asiasanat
Alkuperäislähde
https://jmlr.org/papers/v24/21-1322.htmlJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/184925714
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; Profilointi, SALisätietoja rahoituksesta
This work was supported by Academy of Finland grant numbers 311877 and 331817.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Contrasting Identifying Assumptions of Average Causal Effects : Robustness and Semiparametric Efficiency
Gorbach, Tetiana; de Luna, Xavier; Karvanen, Juha; Waernbaum, Ingeborg (JMLR, 2023)Semiparametric inference on average causal effects from observational data is based on assumptions yielding identification of the effects. In practice, several distinct identifying assumptions may be plausible; an analyst ... -
Enhancing Identification of Causal Effects by Pruning
Tikka, Santtu; Karvanen, Juha (MIT Press, 2018)Causal models communicate our assumptions about causes and e ects in real-world phenomena. Often the interest lies in the identification of the e ect of an action which means deriving an expression from the observed ... -
Simplifying Probabilistic Expressions in Causal Inference
Tikka, Santtu; Karvanen, Juha (MIT Press, 2017)Obtaining a non-parametric expression for an interventional distribution is one of the most fundamental tasks in causal inference. Such an expression can be obtained for an identifiable causal effect by an algorithm or ... -
The choice of control variables in empirical management research : How causal diagrams can inform the decision
Hünermund, Paul; Louw, Beyers; Rönkkö, Mikko (Elsevier, 2024)The Leadership Quarterly and the management community more broadly prioritize identifying causal relationships to inform effective leadership practices. Despite the availability of more refined causal identification ... -
Evolutionary game theory of continuous traits from a causal perspective
Lehtonen, Jussi; Otsuka, Jun (The Royal Society Publishing, 2023)Modern evolutionary game theory typically deals with the evolution of continuous, quantitative traits under weak selection, allowing the incorporation of rich biological detail and complicated nonlinear interactions. While ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.