The choice of control variables in empirical management research : How causal diagrams can inform the decision
Abstract
The Leadership Quarterly and the management community more broadly prioritize identifying causal relationships to inform effective leadership practices. Despite the availability of more refined causal identification strategies, such as instrumental variables or natural experiments, control variables remain a common strategy in leadership research. The current literature generally agrees that control variables should be chosen based on theory and that these choices should be reported transparently. However, the literature provides little guidance on how specifically potential controls can be identified, how many control variables should be used, and whether a potential control variable should be included. Consequently, the current empirical literature is not fully transparent on how controls are selected and may be contaminated with bad controls that compromise causal inference. Causal diagrams provide a transparent framework to address these issues. This article introduces causal diagrams for leadership and management researchers and presents a workflow for finding an appropriate set of control variables.
Main Authors
Format
Articles
Research article
Published
2024
Series
Subjects
Publication in research information system
Publisher
Elsevier
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202412047622Use this for linking
Review status
Peer reviewed
ISSN
1048-9843
DOI
https://doi.org/10.1016/j.leaqua.2024.101845
Language
English
Published in
Leadership Quarterly
Citation
- Hünermund, P., Louw, B., & Rönkkö, M. (2024). The choice of control variables in empirical management research : How causal diagrams can inform the decision. Leadership Quarterly, Early online, Article 101845. https://doi.org/10.1016/j.leaqua.2024.101845
Copyright© 2024 The Author(s). Published by Elsevier Inc.