dc.contributor.author | Hautala, Arto J. | |
dc.contributor.author | Shavazipour, Babooshka | |
dc.contributor.author | Afsar, Bekir | |
dc.contributor.author | Tulppo, Mikko P. | |
dc.contributor.author | Miettinen, Kaisa | |
dc.date.accessioned | 2023-09-01T10:52:25Z | |
dc.date.available | 2023-09-01T10:52:25Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Hautala, A. J., Shavazipour, B., Afsar, B., Tulppo, M. P., & Miettinen, K. (2023). Machine learning models in predicting health care costs in patients with a recent acute coronary syndrome : A prospective pilot study. <i>Cardiovascular Digital Health Journal</i>, <i>4</i>(4), 137-142. <a href="https://doi.org/10.1016/j.cvdhj.2023.05.001" target="_blank">https://doi.org/10.1016/j.cvdhj.2023.05.001</a> | |
dc.identifier.other | CONVID_183230136 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/88851 | |
dc.description.abstract | Background
Health care budgets are limited requiring the optimal use of resources. Machine learning (ML) methods may have an enormous potential for effective use of health care resources.
Objective
We assessed the applicability of selected ML tools to evaluate the contribution of known risk markers for prognosis of coronary artery disease to predict health care costs for all reasons in patients with a recent acute coronary syndrome (n = 65, aged 65 ± 9 years) for one-year follow-up.
Methods
Risk markers were assessed at baseline, and health care costs were collected from electronic health registries. The Cross-decomposition algorithms were used to rank the considered risk markers based on their impacts on variances. Then regression analysis was performed to predict costs by entering the first top-ranking risk marker and adding the next best markers, one-by-one, to built-up altogether 13 predictive models.
Results
The average annual health care costs were €2601±5378 per patient. The Depression Scale showed the highest predictive value (r = 0.395), accounting for 16% of the costs (p=0.001). When the next two ranked markers (LDL cholesterol; r = 0.230 and left ventricular ejection fraction; r= - 0.227, respectively) were added to the model, the predictive value was 24 % for the costs (p=0.001).
Conclusion
Higher depression score is the primary variable forecasting health care costs in one-year follow-up among acute coronary syndrome patients. The ML tools may help decision-making when planning optimal utilization of treatment strategies. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Cardiovascular Digital Health Journal | |
dc.rights | CC BY 4.0 | |
dc.subject.other | coronary artery disease | |
dc.subject.other | coronary heart disease | |
dc.subject.other | artificial intelligence | |
dc.subject.other | health care costs | |
dc.subject.other | economic evaluation | |
dc.title | Machine learning models in predicting health care costs in patients with a recent acute coronary syndrome : A prospective pilot study | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202309014885 | |
dc.contributor.laitos | Liikuntatieteellinen tiedekunta | fi |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Sport and Health Sciences | en |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Laskennallinen tiede | fi |
dc.contributor.oppiaine | Hyvinvoinnin tutkimuksen yhteisö | fi |
dc.contributor.oppiaine | Multiobjective Optimization Group | fi |
dc.contributor.oppiaine | Päätöksen teko monitavoitteisesti | fi |
dc.contributor.oppiaine | Computational Science | en |
dc.contributor.oppiaine | School of Wellbeing | en |
dc.contributor.oppiaine | Multiobjective Optimization Group | en |
dc.contributor.oppiaine | Decision analytics utilizing causal models and multiobjective optimization | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 137-142 | |
dc.relation.issn | 2666-6936 | |
dc.relation.numberinseries | 4 | |
dc.relation.volume | 4 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2023 Heart Rhythm Society | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 322221 | |
dc.subject.yso | sydäntaudit | |
dc.subject.yso | taloudellinen arviointi | |
dc.subject.yso | resurssit | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | kustannukset | |
dc.subject.yso | ennusteet | |
dc.subject.yso | terveydenhoito | |
dc.subject.yso | tekoäly | |
dc.subject.yso | sepelvaltimotauti | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2710 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11121 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19352 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7517 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3297 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2641 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2616 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16060 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.cvdhj.2023.05.001 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | This study was partly funded by the Academy of Finland (grant no. 322221). | |
dc.type.okm | A1 | |