Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora
DUNE Collaboration. (2023). Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora. European Physical Journal C, 83, Article 618. https://doi.org/10.1140/epjc/s10052-023-11733-2
Published in
European Physical Journal CAuthors
Date
2023Copyright
© 2023 the Authors
The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6±0.6% and 84.1±0.6±0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.
...
Publisher
SpringerISSN Search the Publication Forum
1434-6044Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/184128395
Metadata
Show full item recordCollections
Additional information about funding
The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We gratefully acknowledge the support of the CERN management, and the CERN EP, BE, TE, EN and IT Departments for NP04/ProtoDUNE-SP. This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MŠMT, Czech Republic; ERDF, H2020-EU and MSCA, European Union; CNRS/IN2P3 and CEA, France; INFN, Italy; FCT, Portugal; NRF, South Korea; CAM, Fundación “La Caixa”, Junta de Andalucía-FEDER, MICINN, and Xunta de Galicia, Spain; SERI and SNSF, Switzerland; TÜBİTAK, Turkey; The Royal Society and UKRI/STFC, United Kingdom; DOE and NSF, United States of America. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. ...License
Related items
Showing items with similar title or keywords.
-
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector
DUNE Collaboration (American Physical Society (APS), 2023)Measurements of electrons from νe interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino ... -
Calculated solar-neutrino capture rate for a radiochemical 205Tl-based solar-neutrino detector
Kostensalo, Joel; Suhonen, Jouni; Zuber, K. (American Physical Society, 2020)Radiochemical experiments for low-energy solar-neutrino detection have been making headlines by exploiting the isotopes 37Cl and 71Ga. Such a very low-threshold measurement of this type can also be performed using 205Tl, ... -
Solar neutrino detection in liquid xenon detectors via charged-current scattering to excited states
Haselschwardt, Scott; Lenardo, Brian; Pirinen, Pekka; Suhonen, Jouni (American Physical Society (APS), 2020)We investigate the prospects for real-time detection of solar neutrinos via the charged-current neutrino-nucleus scattering process in liquid xenon time projection chambers. We use a nuclear shell model, benchmarked with ... -
New ALICE detectors for Run 3 and 4 at the CERN LHC
Trzaska, Wladyslaw (Elsevier, 2020)Run 3 at the CERN LHC is scheduled to start in March 2021. In preparation for this new data taking period the ALICE experiment is making major modifications to its subsystems and is introducing three new detectors: the ... -
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
The DUNE collaboration (Institute of Physics, 2020)The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged ...