Näytä suppeat kuvailutiedot

dc.contributor.authorDUNE Collaboration
dc.date.accessioned2023-08-31T08:41:18Z
dc.date.available2023-08-31T08:41:18Z
dc.date.issued2023
dc.identifier.citationDUNE Collaboration. (2023). Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora. <i>European Physical Journal C</i>, <i>83</i>, Article 618. <a href="https://doi.org/10.1140/epjc/s10052-023-11733-2" target="_blank">https://doi.org/10.1140/epjc/s10052-023-11733-2</a>
dc.identifier.otherCONVID_184128395
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88820
dc.description.abstractThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6±0.6% and 84.1±0.6±0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesEuropean Physical Journal C
dc.rightsCC BY 4.0
dc.titleReconstruction of interactions in the ProtoDUNE-SP detector with Pandora
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202308314856
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1434-6044
dc.relation.volume83
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysohiukkasfysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p15576
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1140/epjc/s10052-023-11733-2
jyx.fundinginformationThe ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We gratefully acknowledge the support of the CERN management, and the CERN EP, BE, TE, EN and IT Departments for NP04/ProtoDUNE-SP. This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MŠMT, Czech Republic; ERDF, H2020-EU and MSCA, European Union; CNRS/IN2P3 and CEA, France; INFN, Italy; FCT, Portugal; NRF, South Korea; CAM, Fundación “La Caixa”, Junta de Andalucía-FEDER, MICINN, and Xunta de Galicia, Spain; SERI and SNSF, Switzerland; TÜBİTAK, Turkey; The Royal Society and UKRI/STFC, United Kingdom; DOE and NSF, United States of America. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0