dc.contributor.advisor | Parviainen, Mikko | |
dc.contributor.author | Taipalus, Janne | |
dc.date.accessioned | 2023-08-04T05:43:44Z | |
dc.date.available | 2023-08-04T05:43:44Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/88498 | |
dc.description.abstract | Tässä tutkielmassa tutustumme köydenvetopeliin satunnaiskohinalla. Kyseinen peli on kahden pelaajan stokastinen peli, jossa kukin pelaaja yrittää saavuttaa alueen reunan sellaisesta kohdasta, joka on hänelle edullinen. Pelin lopuksi toinen pelaaja maksaa toiselle pelaajalle sen verran rahaa, kuin alueen reunalla määritelty funktio siinä kohdassa määrää.
Jokaisella kierroksella on täysin sattumasta kiinni, kumman pelaajan vuoro on päättää minne liikutaan ja lisäksi tässä on mukana satunnaiskohina, joka voi viedä pelaajat satunnaiseen pisteeseen.
Pelaajien ottamien askelten pituus on oltava pienempää kuin \(\varepsilon > 0\) ja samoin satunnaisen pisteen etäisyys nykyisestä pelitilanteesta on oltava pienempää kuin \(\varepsilon\).
Kyseisen köydenvetopelin avulla määrittelemme \((p,\varepsilon)\)-harmoniset funktiot jotka suppenevat \(p\)-harmoniseen funktioon, kun pelin askelpituus \(\varepsilon\) lähestyy nollaa. Todistaaksemme tämän suppenemisen meidän pitää osoittaa säännöllisyys lokaalisti ja alueen reunalla. Tutkielmassa annamme peliteoreettiset todistukset näille säännöllisyystuloksille.
Tutkielman alussa käymme läpi osittaisdifferentiaaliyhtälöiden ja stokastiikan osalta tarvittavia käsitteitä ja tuloksia. Tutkielmassa käsittelemme peliteoreettista (tunnetaan myös normalisoituna) \(p\)-Laplacen yhtälöä. Määritelläksemme tämän tutustumme ensin Laplacen yhtälöön ja \(\infty\)-Laplacen yhtälöön. Käsittelemme tässä tutkielmassa viskositeettiratkaisuja ja käy ilmi, että peliteoreettisen \(p\)-Laplacen yhtälön ja \(p\)-Laplacen yhtälön viskositeettiratkaisut ovat samat. Joten voimme tutkia \(p\)-Laplacen yhtälön ratkaisuja tutkimalla peliteoreettisen \(p\)-Laplacen yhtälön ratkaisuja.
Stokastiikasta tarvitsemme erityisesti pysähtymisaikaa ja valinnaisen pysähtymisen lausetta. Näitä varten tutustumme moniin stokastiikan peruskäsitteisiin ja eräisiin stokastisiin prosesseihin, joita kutsutaan martingaaleiksi. | fi |
dc.format.extent | 60 | |
dc.language.iso | fi | |
dc.rights | In Copyright | |
dc.subject.other | p-Laplacen yhtälö | |
dc.subject.other | köydenvetopeli satunnaiskohinalla | |
dc.subject.other | viskositeettiratkaisut | |
dc.subject.other | p-harmoniset funktiot | |
dc.title | Köydenvetopeli satunnaiskohinalla ja p-Laplacen yhtälö | |
dc.type | master thesis | |
dc.identifier.urn | URN:NBN:fi:jyu-202308044613 | |
dc.type.ontasot | Master’s thesis | en |
dc.type.ontasot | Pro gradu -tutkielma | fi |
dc.contributor.tiedekunta | Matemaattis-luonnontieteellinen tiedekunta | fi |
dc.contributor.tiedekunta | Faculty of Sciences | en |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.rights.copyright | © The Author(s) | |
dc.rights.accesslevel | openAccess | |
dc.type.publication | masterThesis | |
dc.contributor.oppiainekoodi | 4041 | |
dc.subject.yso | matematiikka | |
dc.subject.yso | yhtälöt | |
dc.subject.yso | osittaisdifferentiaaliyhtälöt | |
dc.subject.yso | funktiot | |
dc.subject.yso | peliteoria | |
dc.rights.url | https://rightsstatements.org/page/InC/1.0/ | |