Harmoniset funktiot kompleksialueessa ja konformikuvaukset
Tämän tutkielman tarkoituksena on syventää tietoja kompleksianalyysistä tutustumalla harmonisiin funktioihin ja konformikuvauksiin. Funktioita, jotka toteuttavat Laplacen yhtälön, kutsutaan harmonisiksi funktioiksi. Harmonisten funktioiden määrittämiseen voidaan käyttää Cauchy-Riemannin yhtälöitä. Harmoniset funktioit ovat yhteydessä analyyttisiin funktioihin, sillä harmonisten funktioiden avulla voidaan selittää analyyttisten kuvausten teoriaa ja päinvastoin. Tämän tutkielman kannalta tärkeimpiä analyyttisiä kuvauksia ovat injektiiviset kuvaukset, jotka tunnetaan myös konformikuvauksina. Konformikuvaukset ovat alueiden välisiä kuvauksia, jotka säilyttävät kulmien suuruuden ja suunnan ja joiden derivaatta on äärellinen ja nollasta eroava. Harmonisten funktioiden ja konformikuvausten välillä on monia tärkeitä yhteyksiä. Esimerkiksi, jos harmoniselle funktiolle tehdään konforminen muuttujanvaihto, niin myös tuloksena saatu funktio on harmoninen.
Tutkielman motivaationa on oppia ratkaisemaan Dirichlet'n ongelma erityisesti puolitasossa, kiekossa ja monikulmiossa. Dirichlet'n ongelma määritellään usein sellaisessa alueessa, jossa se on vaikea ratkaista. Siten tavoitteena on löytää analyyttinen kuvaus monimutkaisesta alueesta yksinkertaisempaan alueeseen, jossa ongelma on ratkaistavissa. Tällainen analyyttinen kuvaus löydetään tunnettujen konformikuvausten joukosta tai se ratkaistaan esimerkiksi lineaaristen rationaalikuvausten tai Schwarz-Christoffelin kaavan avulla. Puolitasossa ja yksikkökiekossa ongelman ratkaisemiseen voidaan soveltaa Poissonin integrointikaavoja. Dirichlet'n ongelman ratkaiseminen noudattaa neljän vaiheen ratkaisumenetelmää.
...


Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [23396]
Related items
Showing items with similar title or keywords.
-
Analyyttinen jatke ja Riemannin pinnat
Hakavuori, Eero (2014)Tämän tutkielman tavoitteena on esittää, miten analyyttisen funktion määrittelyjoukko laajennetaan Riemannin pinnaksi, joka sisältää informaation kaikista funktion analyyttisistä jatkeista kompleksitasossa. Tätä Riemannin ... -
Cauchyn lause ja potentiaalifunktiot
Haasianlahti, Ivar (2019)Tämä tutkielma käsittelee reaalisia ja kompleksisia tieintegraaleja tasossa. Kiinnostuksen kohteena ovat erityisesti ne erikoistapaukset, joissa integrointiin liittyvä tie on suljettu, ja integroitava kuvaus on joko lokaalisi ... -
Picardin lauseen todistaminen Harnackin epäyhtälön avulla
Kauppinen, Jussi (2020)Charles Emile Picardin mukaan nimetty Picardin lause ottaa kantaa kompleksisesti differentioituvien eli analyyttisten funktioiden käyttäytymiseen. Kyseinen lause on tutkielman päätulos. Tarkalleen lauseessa väitetään, että ... -
Eulerin summia
Kaskela, Kai (2014)Tämän tutkielman tarkoituksena on tarkastella menetelmiä joilla voidaan laskea niin kutsuttuja Eulerin summia. Eulerin summia ovat Riemannin zeeta-funktion arvoja parillisissa ja positiivisissa kokonaislukupisteissä. Vaikka ... -
Konformisia ja lokaalisti konformisia kuvauksia
Jäntti, Pasi (2019)Tässä tutkielmassa perehdytään konformikuvauksiin liittyvään teoriaan. Erityisesti tarkastellaan konformikuvauksia eri kompleksitason alueiden välillä. Tutkielman yhtenä päätuloksena todistetaan Riemannin kuvauslause, jonka ...