Unsupervised feature analysis of real and synthetic knee X-ray images
Tekijät
Päivämäärä
2023Tekijänoikeudet
© The Author(s)
Generatiiviset mallit ovat parantuneet valtavasti viime vuosina, ja tämä on luonut tarpeen automaattisille validointitekniikoille synteettiselle datalle.
Tässä pro gradu -työssä testatiin menetelmää synteettisten kuvien validointiin, joka perustuu
piirteiden poimimiseen ja klusterianalyysiin, generatiivisten vastakkaisten verkostojen luo-
tujen röntgenkuvien avulla. Tulokset osoittavat, että luodut kuvat noudattavat koulutuksessa
käytettyjen kuvien jakaumaa, mutta eroavat selvästi toisesta datajoukosta olevista röntgenkuvista. Generative models have improved massively in the recent years, and this has
created a need for automatic validation techniques for synthetic data. In this master’s thesis
a method for validating synthetic images based on feature extraction and cluster analysis is
tested on X-ray images created with generative adversarial networks. The results show that
the generated images follow the distribution of the imageset used in training, but are clearly
distinct from a different X-ray imageset.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29750]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification
Prezja, Fabi; Paloneva, Juha; Pölönen, Ilkka; Niinimäki, Esko; Äyrämö, Sami (Nature Publishing Group, 2022)Recent developments in deep learning have impacted medical science. However, new privacy issues and regulatory frameworks have hindered medical data sharing and collection. Deep learning is a very data-intensive process ... -
Taxonomy-Informed Neural Networks for Smart Manufacturing
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2024)A neural network (NN) is known to be an efficient and learnable tool supporting decision-making processes particularly in Industry 4.0. The majority of NNs are data-driven and, therefore, depend on training data quantity ... -
An automatic method for assessing spiking of tibial tubercles associated with knee osteoarthritis
Patron, Anri (2022)Polvinivelrikon kasvavan esiintyvyyden vuoksi tehokkaat varhaiset diagnoosimenetelmät ovat haluttavia. Radiografia on keskeinen osa polvinivelrikon diagnostiikassa. Polvinivelrikon varhainen tunnistaminen on haastavaa, ... -
Unsupervised network intrusion detection systems for zero-day fast-spreading network attacks and botnets
Vahdani Amoli, Payam (University of Jyväskylä, 2015)Today, the occurrence of zero-day and complex attacks in high-speed networks is increasingly common due to the high number vulnerabilities in the cyber world. As a result, intrusions become more sophisticated and fast ... -
Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network
Salmi, Pauliina; Calderini, Marco; Pääkkönen, Salli; Taipale, Sami; Pölönen, Ilkka (Springer Science and Business Media LLC, 2022)Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.