University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Unsupervised network intrusion detection systems for zero-day fast-spreading network attacks and botnets

Thumbnail
View/Open
1.2 Mb

Downloads:  
Show download detailsHide download details  
Published in
Jyväskylä studies in computing
Authors
Vahdani Amoli, Payam
Date
2015
Discipline
Tietotekniikka

 
Today, the occurrence of zero-day and complex attacks in high-speed networks is increasingly common due to the high number vulnerabilities in the cyber world. As a result, intrusions become more sophisticated and fast to detrimental the networks and hosts. Due to these reasons real-time monitoring, processing and intrusion detection are now among the key features of NIDS. Traditional types of intrusion detection systems such as signature base IDS are not able detect intrusions with new and complex strategies. Now days, automatic traffic analysis and anomaly intrusion detection became more efficient in field of network security however they suffer from high number of false alarms. Among all type of anomaly detection methods unsupervised machine-learning techniques are commonly applied in NIDS to detect unknown and complex attacks in the network without any prior knowledge. This dissertation manly focuses on analyzing network traffic to find abnormal behavior in real time. The proposed framework consists of network traffic preprocessing, anomaly detection and clustering methods. The proposed framework is capable of generating meaningful reports related to the detection of real intrusions in well-known datasets. Unsupervised learning methods are capable of adapting their required features to the dynamically behavior of the network. Due to unfeasibility of payloads checking in high-speed network the proposed framework monitors network flows instead. Network flow contains the behavior of the network in higher extensive vision and shows the explicitness of the network data, which results in faster and higher detection rate of network attacks. This research shows that by using proper data preprocessing and unsupervised data analyzing methods it is possible to detect fast and complex zero days (new) attack in real time. The practical experiments are presented in the included articles. ...
Publisher
University of Jyväskylä
ISBN
978-951-39-6452-8
ISSN Search the Publication Forum
1456-5390
Contains publications
  • Article I: Etemad, F. F. & Amoli, P. V. 2012. Real-time Botnet command and control characterization at the host level. Telecommunications (IST), 2012 Sixth International Symposium on. Tehran, Iran: IEEE, 1005-1009.>DOI: 10.1109/ISTEL.2012.6483133
  • Article II: Amoli, P. V. & Hämäläinen, T. 2013. A real time unsupervised NIDS for detecting unknown and encrypted network attacks in high speed network. Measurements and Networking Proceedings (M&N), 2013 IEEE International Workshop on. Naples, Italy: IEEE, 149-154. DOI: 10.1109/IWMN.2013.6663794
  • Article III: Hosseinpour, F., Ramadass, S., Meulenberg, A., Amoli, P. V. & Moghaddasi, Z. 2013. Distributed Agent Based Model for Intrusion Detection System Based on Artificial Immune System. International Journal of Digital Content Technology and its Applications (JDCTA) 7(9), 206-214. 10.4156/jdcta.vol7.issue9.26
  • Article IV: Hosseinpour, F., Amoli, P. V., Farahnakian, F., Plosila, J. & Hämäläinen, T. 2014. Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach. International Journal of Digital Content Technology and its Applications (JDCTA) 8(5), 1-12.
  • Article V:. Amoli, P. V., Hämäläinen, T., David, G., Zolotukhin, M. & Mirzamohammad, M. (Accepted Nov/2015). Unsupervised Network Intrusion Detection Systems for Zero-Day Fast-Spreading Attacks and Botnets. International Journal of Digital Content Technology and its Applications (JDCTA)
Keywords
tunkeilijan havaitsemisjärjestelmät machine learning clustering (unsupervised) network security anomaly detection intrusion detection tietoturva verkkohyökkäykset tietoliikenneverkot tiedonsiirto monitorointi reaaliaikaisuus koneoppiminen algoritmit klusterianalyysi
URI

http://urn.fi/URN:ISBN:978-951-39-6452-8

Metadata
Show full item record
Collections
  • Väitöskirjat [3176]

Related items

Showing items with similar title or keywords.

  • On data mining applications in mobile networking and network security 

    Zolotukhin, Mikhail (University of Jyväskylä, 2014)
  • Intrusion detection applications using knowledge discovery and data mining 

    Juvonen, Antti (University of Jyväskylä, 2014)
  • Anomaly-based online intrusion detection system as a sensor for cyber security situational awareness system 

    Kokkonen, Tero (University of Jyväskylä, 2016)
    Almost all the organisations and even individuals rely on complex structures of data networks and networked computer systems. That complex data ensemble, the cyber domain, provides great opportunities, but at the same ...
  • On Attacking Future 5G Networks with Adversarial Examples : Survey 

    Zolotukhin, Mikhail; Zhang, Di; Hämäläinen, Timo; Miraghaei, Parsa (MDPI AG, 2023)
    The introduction of 5G technology along with the exponential growth in connected devices is expected to cause a challenge for the efficient and reliable network resource allocation. Network providers are now required to ...
  • Evaluation of Ensemble Machine Learning Methods in Mobile Threat Detection 

    Kumar, Sanjay; Viinikainen, Ari; Hämäläinen, Timo (Infonomics Society, 2017)
    The rapid growing trend of mobile devices continues to soar causing massive increase in cyber security threats. Most pervasive threats include ransom-ware, banking malware, premium SMS fraud. The solitary hackers use ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre