An automatic method for assessing spiking of tibial tubercles associated with knee osteoarthritis
Polvinivelrikon kasvavan esiintyvyyden vuoksi tehokkaat varhaiset diagnoosimenetelmät ovat haluttavia. Radiografia on keskeinen osa polvinivelrikon diagnostiikassa. Polvinivelrikon varhainen tunnistaminen on haastavaa, sillä tärkeimpiä polvinivelrikon merkkejä on vaikea havaita röntgenkuvista taudin varhaisessa vaiheessa. Koneoppimallien kehittämistä varhaiseen polvinivelrikon tunnistamiseen vaikeuttaa lisäksi saatavilla olevan datan kohinaisuus. Tämän tutkielman tavoitteena oli tarkastella hypoteesia eminentian terävöitymisestä varhaisen polvinivelrikon piirteenä. Tutkielmassa kehitettiin myös neuroverkkopohjainen malli piirteen tunnistamiseen röntgenkuvista. Työn tulokset viittaavat eminentian terävyyden olevan yhteydessä varhaiseen polvinivelrikkoon. Tämän lisäksi piirre voidaan tunnistaa automaattisesti röntgenkuvista. Työn tuloksia voidaan pitää kuitenkin vasta alustavina. Efficient and scalable early diagnostic methods are warranted due to the rising prevalence of knee osteoarthritis. Radiographic imaging is the standard procedure in osteoarthritis diagnosis. However, the circumstances for early diagnosis are problematic since the plain radiographs are insensitive to the established early signs of knee osteoarthritis. Furthermore, developing machine learning tools for radiographic knee osteoarthritis diagnosis is challenging due to noisy ground-truth. The objective of this thesis was to assess a feature called spiking of tibial tubercles, which has been hypothesized as an early sign of knee osteoarthritis. Additionally, we developed a model based on neural networks for identifying the feature in plain radiographs. Our results indicate promise in including tibial spiking as an early feature of knee osteoarthritis, and the feature is identifiable automatically. However, the work in the current thesis is limited and should be validated by future work.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29740]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
An Automatic Method for Assessing Spiking of Tibial Tubercles Associated with Knee Osteoarthritis
Patron, Anri; Annala, Leevi; Lainiala, Olli; Paloneva, Juha; Äyrämö,Sami (MDPI AG, 2022)Efficient and scalable early diagnostic methods for knee osteoarthritis are desired due to the disease’s prevalence. The current automatic methods for detecting osteoarthritis using plain radiographs struggle to identify ... -
DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification
Prezja, Fabi; Paloneva, Juha; Pölönen, Ilkka; Niinimäki, Esko; Äyrämö, Sami (Nature Publishing Group, 2022)Recent developments in deep learning have impacted medical science. However, new privacy issues and regulatory frameworks have hindered medical data sharing and collection. Deep learning is a very data-intensive process ... -
Taxonomy-Informed Neural Networks for Smart Manufacturing
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2024)A neural network (NN) is known to be an efficient and learnable tool supporting decision-making processes particularly in Industry 4.0. The majority of NNs are data-driven and, therefore, depend on training data quantity ... -
Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network
Salmi, Pauliina; Calderini, Marco; Pääkkönen, Salli; Taipale, Sami; Pölönen, Ilkka (Springer Science and Business Media LLC, 2022)Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the ... -
Quantification of Errors Generated by Uncertain Data in a Linear Boundary Value Problem Using Neural Networks
Halonen, Vilho; Pölönen, Ilkka (Society for Industrial & Applied Mathematics (SIAM), 2023)Quantifying errors caused by indeterminacy in data is currently computationally expensive even in relatively simple PDE problems. Efficient methods could prove very useful in, for example, scientific experiments done with ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.