Quantitative lower bounds to the Euclidean and the Gaussian Cheeger constants
Julin, V., & Saracco, G. (2021). Quantitative lower bounds to the Euclidean and the Gaussian Cheeger constants. Annales Fennici Mathematici, 46(2), 1071-1087. https://doi.org/10.5186/aasfm.2021.4666
Julkaistu sarjassa
Annales Fennici MathematiciPäivämäärä
2021Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© 2021 The Finnish Mathematical Society
We provide a quantitative lower bound to the Cheeger constant of a set Ω in both the Euclidean and the Gaussian settings in terms of suitable asymmetry indexes. We provide examples which show that these quantitative estimates are sharp.
Julkaisija
Suomen matemaattinen yhdistys ryISSN Hae Julkaisufoorumista
2737-0690Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/100346556
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Spectral multipliers and wave equation for sub-Laplacians : lower regularity bounds of Euclidean type
Martini, Alessio; Müller, Detlef; Nicolussi Golo, Sebastiano (European Mathematical Society - EMS - Publishing House GmbH, 2023)Let L be a smooth second-order real differential operator in divergence form on a manifold of dimension n. Under a bracket-generating condition, we show that the ranges of validity of spectral multiplier estimates of ... -
Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds
Krupchyk, Katya; Liimatainen, Tony; Salo, Mikko (Elsevier Inc., 2022)In this article we study the linearized anisotropic Calderón problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a ... -
Recovery of time dependent coefficients from boundary data for hyperbolic equations
Feizmohammadi, Ali; Ilmavirta, Joonas; Kian, Yavar; Oksanen, Lauri (European Mathematical Society - EMS - Publishing House GmbH, 2021)We study uniqueness of the recovery of a time-dependent magnetic vector valued potential and an electric scalar-valued potential on a Riemannian manifold from the knowledge of the Dirichlet-to-Neumann map of a hyperbolic ... -
Gamma-convergence of Gaussian fractional perimeter
Carbotti, Alessandro; Cito, Simone; La Manna, Domenico Angelo; Pallara, Diego (De Gruyter, 2023)We prove the Γ-convergence of the renormalised Gaussian fractional s-perimeter to the Gaussian perimeter as s→1−. Our definition of fractional perimeter comes from that of the fractional powers of Ornstein–Uhlenbeck operator ... -
Fully reliable a posteriori error control for evolutionary problems
Matculevich, Svetlana (University of Jyväskylä, 2015)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.