dc.contributor.author | Petäinen, Liisa | |
dc.contributor.author | Väyrynen, Juha P. | |
dc.contributor.author | Ruusuvuori, Pekka | |
dc.contributor.author | Pölönen, Ilkka | |
dc.contributor.author | Äyrämö, Sami | |
dc.contributor.author | Kuopio, Teijo | |
dc.date.accessioned | 2023-05-31T05:57:18Z | |
dc.date.available | 2023-05-31T05:57:18Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Petäinen, L., Väyrynen, J. P., Ruusuvuori, P., Pölönen, I., Äyrämö, S., & Kuopio, T. (2023). Domain-specific transfer learning in the automated scoring of tumor-stroma ratio from histopathological images of colorectal cancer. <i>PLoS ONE</i>, <i>18</i>(5), Article e0286270. <a href="https://doi.org/10.1371/journal.pone.0286270" target="_blank">https://doi.org/10.1371/journal.pone.0286270</a> | |
dc.identifier.other | CONVID_183341874 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/87316 | |
dc.description.abstract | Tumor-stroma ratio (TSR) is a prognostic factor for many types of solid tumors. In this study, we propose a method for automated estimation of TSR from histopathological images of colorectal cancer. The method is based on convolutional neural networks which were trained to classify colorectal cancer tissue in hematoxylin-eosin stained samples into three classes: stroma, tumor and other. The models were trained using a data set that consists of 1343 whole slide images. Three different training setups were applied with a transfer learning approach using domain-specific data i.e. an external colorectal cancer histopathological data set. The three most accurate models were chosen as a classifier, TSR values were predicted and the results were compared to a visual TSR estimation made by a pathologist. The results suggest that classification accuracy does not improve when domain-specific data are used in the pre-training of the convolutional neural network models in the task at hand. Classification accuracy for stroma, tumor and other reached 96.1% on an independent test set. Among the three classes the best model gained the highest accuracy (99.3%) for class tumor. When TSR was predicted with the best model, the correlation between the predicted values and values estimated by an experienced pathologist was 0.57. Further research is needed to study associations between computationally predicted TSR values and other clinicopathological factors of colorectal cancer and the overall survival of the patients. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Public Library of Science (PLoS) | |
dc.relation.ispartofseries | PLoS ONE | |
dc.rights | CC BY 4.0 | |
dc.subject.other | colorectal cancer | |
dc.subject.other | machine learning | |
dc.subject.other | cancers and neoplasms | |
dc.subject.other | smooth muscles | |
dc.subject.other | vision | |
dc.subject.other | neural networks | |
dc.subject.other | malignant tumors | |
dc.subject.other | forecasting | |
dc.title | Domain-specific transfer learning in the automated scoring of tumor-stroma ratio from histopathological images of colorectal cancer | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202305313372 | |
dc.contributor.laitos | Bio- ja ympäristötieteiden laitos | fi |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Department of Biological and Environmental Science | en |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | fi |
dc.contributor.oppiaine | Solu- ja molekyylibiologia | fi |
dc.contributor.oppiaine | Laskennallinen tiede | fi |
dc.contributor.oppiaine | Hyvinvoinnin tutkimuksen yhteisö | fi |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | en |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | en |
dc.contributor.oppiaine | Cell and Molecular Biology | en |
dc.contributor.oppiaine | Computational Science | en |
dc.contributor.oppiaine | School of Wellbeing | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1932-6203 | |
dc.relation.numberinseries | 5 | |
dc.relation.volume | 18 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2023 Petäinen et al. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | A75000 | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | syöpätaudit | |
dc.subject.yso | neuroverkot | |
dc.subject.yso | suolistosyövät | |
dc.subject.yso | ennusteet | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p678 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7292 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p25845 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3297 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.dataset | 10.17632/37t2d6xmy2.1 | |
dc.relation.doi | 10.1371/journal.pone.0286270 | |
dc.relation.funder | Council of Tampere Region | en |
dc.relation.funder | Pirkanmaan liitto | fi |
jyx.fundingprogram | ERDF European Regional Development Fund, React-EU | en |
jyx.fundingprogram | EAKR Euroopan aluekehitysrahasto, React-EU | fi |
jyx.fundinginformation | This study is one part of AI Hub Central Finland project that has received funding from the Council of Tampere Region (https://www. pirkanmaa.fi/en/) (Decision number: A75000) and Leverage from the EU 2014–2020, funded by European Regional Development Fund (ERDF) (https://ec.europa.eu/regional_policy/funding/erdf_ en). | |
dc.type.okm | A1 | |