Näytä suppeat kuvailutiedot

dc.contributor.authorPetäinen, Liisa
dc.contributor.authorVäyrynen, Juha P.
dc.contributor.authorRuusuvuori, Pekka
dc.contributor.authorPölönen, Ilkka
dc.contributor.authorÄyrämö, Sami
dc.contributor.authorKuopio, Teijo
dc.date.accessioned2023-05-31T05:57:18Z
dc.date.available2023-05-31T05:57:18Z
dc.date.issued2023
dc.identifier.citationPetäinen, L., Väyrynen, J. P., Ruusuvuori, P., Pölönen, I., Äyrämö, S., & Kuopio, T. (2023). Domain-specific transfer learning in the automated scoring of tumor-stroma ratio from histopathological images of colorectal cancer. <i>PLoS ONE</i>, <i>18</i>(5), Article e0286270. <a href="https://doi.org/10.1371/journal.pone.0286270" target="_blank">https://doi.org/10.1371/journal.pone.0286270</a>
dc.identifier.otherCONVID_183341874
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/87316
dc.description.abstractTumor-stroma ratio (TSR) is a prognostic factor for many types of solid tumors. In this study, we propose a method for automated estimation of TSR from histopathological images of colorectal cancer. The method is based on convolutional neural networks which were trained to classify colorectal cancer tissue in hematoxylin-eosin stained samples into three classes: stroma, tumor and other. The models were trained using a data set that consists of 1343 whole slide images. Three different training setups were applied with a transfer learning approach using domain-specific data i.e. an external colorectal cancer histopathological data set. The three most accurate models were chosen as a classifier, TSR values were predicted and the results were compared to a visual TSR estimation made by a pathologist. The results suggest that classification accuracy does not improve when domain-specific data are used in the pre-training of the convolutional neural network models in the task at hand. Classification accuracy for stroma, tumor and other reached 96.1% on an independent test set. Among the three classes the best model gained the highest accuracy (99.3%) for class tumor. When TSR was predicted with the best model, the correlation between the predicted values and values estimated by an experienced pathologist was 0.57. Further research is needed to study associations between computationally predicted TSR values and other clinicopathological factors of colorectal cancer and the overall survival of the patients.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.ispartofseriesPLoS ONE
dc.rightsCC BY 4.0
dc.subject.othercolorectal cancer
dc.subject.othermachine learning
dc.subject.othercancers and neoplasms
dc.subject.othersmooth muscles
dc.subject.othervision
dc.subject.otherneural networks
dc.subject.othermalignant tumors
dc.subject.otherforecasting
dc.titleDomain-specific transfer learning in the automated scoring of tumor-stroma ratio from histopathological images of colorectal cancer
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202305313372
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningfi
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineHyvinvoinnin tutkimuksen yhteisöfi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningen
dc.contributor.oppiaineCell and Molecular Biologyen
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineSchool of Wellbeingen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1932-6203
dc.relation.numberinseries5
dc.relation.volume18
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 Petäinen et al.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumberA75000
dc.subject.ysokoneoppiminen
dc.subject.ysosyöpätaudit
dc.subject.ysoneuroverkot
dc.subject.ysosuolistosyövät
dc.subject.ysoennusteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p678
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p25845
jyx.subject.urihttp://www.yso.fi/onto/yso/p3297
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.dataset10.17632/37t2d6xmy2.1
dc.relation.doi10.1371/journal.pone.0286270
dc.relation.funderCouncil of Tampere Regionen
dc.relation.funderPirkanmaan liittofi
jyx.fundingprogramERDF European Regional Development Fund, React-EUen
jyx.fundingprogramEAKR Euroopan aluekehitysrahasto, React-EUfi
jyx.fundinginformationThis study is one part of AI Hub Central Finland project that has received funding from the Council of Tampere Region (https://www. pirkanmaa.fi/en/) (Decision number: A75000) and Leverage from the EU 2014–2020, funded by European Regional Development Fund (ERDF) (https://ec.europa.eu/regional_policy/funding/erdf_ en).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0