Show simple item record

dc.contributor.authorFässler, Katrin
dc.contributor.authorOrponen, Tuomas
dc.date.accessioned2023-05-23T09:05:08Z
dc.date.available2023-05-23T09:05:08Z
dc.date.issued2023
dc.identifier.citationFässler, K., & Orponen, T. (2023). A note on Kakeya sets of horizontal and SL(2) lines. <i>Bulletin of the London Mathematical Society</i>, <i>55</i>(5), 2195-2204. <a href="https://doi.org/10.1112/blms.12844" target="_blank">https://doi.org/10.1112/blms.12844</a>
dc.identifier.otherCONVID_183150025
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/87120
dc.description.abstractWe consider unions of S L (2) lines in R3. These are lines of the form L=(a,b,0)+span(c,d,1) where ab-cd=1. We show that if L is a Kakeya set of S L (2) lines, then the union U L has Hausdorff dimension 3. This answers a question of Wang and Zahl. The S L (2) lines can be identified with horizontal lines in the first Heisenberg group, and we obtain the main result as a corollary of a more general statement concerning unions of horizontal lines. This statement is established via a point-line duality principle between horizontal and conical lines in R3, combined with recent work on restricted families of projections to planes, due to Gan, Guo, Guth, Harris, Maldague and Wang. Our result also has a corollary for Nikodym sets associated with horizontal lines, which answers a special case of a question of Kim.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley-Blackwell
dc.relation.ispartofseriesBulletin of the London Mathematical Society
dc.rightsCC BY 4.0
dc.titleA note on Kakeya sets of horizontal and SL(2) lines
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202305233193
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2195-2204
dc.relation.issn0024-6093
dc.relation.numberinseries5
dc.relation.volume55
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 The Author(s). The Bulletin of the London Mathematical Society is copyright © London Mathematical Society.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber321696
dc.subject.ysomittateoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1112/blms.12844
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationAcademy of Finland, Grant/AwardNumbers: 321696, 321896
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0