Quaternary Reversible Circuit Optimization for Scalable Multiplexer and Demultiplexer
Taherimonfared, A., Ciriani, V., Mikkonen, T., & Haghparast, M. (2023). Quaternary Reversible Circuit Optimization for Scalable Multiplexer and Demultiplexer. IEEE Access, 11, 46592-46603. https://doi.org/10.1109/access.2023.3274118
Julkaistu sarjassa
IEEE AccessPäivämäärä
2023Tekijänoikeudet
© Authors 2023
Information loss is generally related to power consumption. Therefore, reducing information loss is an interesting challenge in designing digital systems. Quaternary reversible circuits have received significant attention due to their low-power design applications and attractive advantages over binary reversible logic. Multiplexer and demultiplexer circuits are crucial parts of computing circuits in ALU, and their efficient design can significantly affect the processors’ performance. A new scalable realization of quaternary reversible 4×1 multiplexer and 1×4 demultiplexer, based on quaternary 1-qudit Shift, 2-qudit Controlled Feynman, and 2-qudit Muthukrishnan-Stroud gates, is presented in this paper. Moreover, the corresponding generalized quaternary reversible n ×1 multiplexer and 1× n demultiplexer circuits are proposed. The comparison, with respect to the current literature, shows that the proposed circuits are more efficient in terms of quantum cost, the number of garbage outputs, and the number of constant inputs.
...
Julkaisija
Institute of Electrical and Electronics Engineers (IEEE)ISSN Hae Julkaisufoorumista
2169-3536Asiasanat
Alkuperäislähde
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/183128041
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
This research has been supported by the Academy of Finland (Project 349945).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Novel qutrit circuit design for multiplexer, De-multiplexer, and decoder
Taheri Monfared, Asma; Ciriani, Valentina; Kettunen, Lauri; Haghparast, Majid (Springer, 2023)Designing conventional circuits present many challenges, including minimizing internal power dissipation. An approach to overcoming this problem is utilizing quantum technology, which has attracted significant attention ... -
Toward Quaternary QCA : Novel Majority and XOR Fuzzy Gates
Akbari-Hasanjani, Reza; Sabbaghi-Nadooshan, Reza; Haghparast, Majid (Institute of Electrical and Electronics Engineers (IEEE), 2022)As an emerging nanotechnology, quantum-dot cellular automata (QCA) has been considered an alternative to CMOS technology that suffers from problems such as leakage current. Moreover, QCA is suitable for multi-valued logic ... -
Design and simulation of QCA-based 3-bit binary to gray and vice versa code converter in reversible and non-reversible mode
Safaiezadeh, Behrouz; Mahdipour, Ebrahim; Haghparast, Majid; Sayedsalehi, Samira; Hosseinzadeh, Mehdi (Elsevier, 2022)The current Very Large-Scale Integration (VLSI) technology has reached its peak due to the fundamental physical limits of Complementary Metal-Oxide-Semiconductor (CMOS). Quantum-dot Cellular Automata (QCA) is considered a ... -
Qutrit representation of quantum images : new quantum ternary circuit design
Taheri Monfared, Asma; Ciriani, Valentina; Haghparast, Majid (Springer, 2024)Quantum computation is growing in significance and proving to be a powerful tool in meeting the high real-time computational demands of classical digital image processing. However, extensive research has been done on quantum ... -
A Novel and Efficient square root Computation Quantum Circuit for Floating-point Standard
Gayathri, S. S.; Kumar, R.; Haghparast, Majid; Dhanalakshmi, Samiappan (Springer, 2022)It is imperative that quantum computing devices perform floating-point arithmetic operations. This paper presents a circuit design for floating-point square root operations designed using classical Babylonian algorithm. ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.