A Novel and Efficient square root Computation Quantum Circuit for Floating-point Standard
Gayathri, S.S., Kumar, R., Haghparast, M., & Dhanalakshmi, S. (2022). A Novel and Efficient square root Computation Quantum Circuit for Floating-point Standard. International Journal of Theoretical Physics, 61, Article 234. https://doi.org/10.1007/s10773-022-05222-7
Julkaistu sarjassa
International Journal of Theoretical PhysicsPäivämäärä
2022Tekijänoikeudet
© 2022, The Author(s), under exclusive licence to Springer Science Business Media, LLC, part of Springer Nature
It is imperative that quantum computing devices perform floating-point arithmetic operations. This paper presents a circuit design for floating-point square root operations designed using classical Babylonian algorithm. The proposed Babylonian square root, is accomplished using Clifford+T operations. This work focuses on realizing the square root circuit by employing the bit Restoring and bit Non-restoring division algorithms as two different approaches. The multiplier of the proposed circuit uses an improved structure of Toom-cook 2.5 multiplier by optimizing the T-gate count of the multiplier. It is determined from the analysis that the proposed square root circuit employing slow-division algorithms results in a T-count reduction of 80.51% and 72.65% over the existing work. The proposed circuit saves a significant number of ancillary qubits, resulting in a qubit cost savings of 61.67 % When compared to the existing work.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0020-7748Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/156682354
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Compact Quantum Circuit Design of PUFFIN and PRINT Lightweight Ciphers for Quantum Key Recovery Attack
Saravanan, P.; Jenitha, J.; Sanjana, S.; Haghparast, Majid (Institute of Electrical and Electronics Engineers (IEEE), 2023)Quantum computing plays a vital role in the next generation computing platforms as researchers have achieved quantum supremacy by proving that quantum computers can outperform classical computers. These high performance ... -
Advancing Nanoscale Computing : Efficient Reversible ALU in Quantum-Dot Cellular Automata
Nemattabar, Shahrokh; Mosleh, Mohammad; Haghparast, Majid; Kheyrandish, Mohammad (Elsevier, 2024)This paper presents a significant contribution to the field of nanoscale computing by proposing an innovative reversible Arithmetic and Logic Unit (ALU) implemented in Quantum-Dot Cellular Automata (QCA). Reversible logic ... -
Qutrit representation of quantum images : new quantum ternary circuit design
Taheri Monfared, Asma; Ciriani, Valentina; Haghparast, Majid (Springer, 2024)Quantum computation is growing in significance and proving to be a powerful tool in meeting the high real-time computational demands of classical digital image processing. However, extensive research has been done on quantum ... -
Novel qutrit circuit design for multiplexer, De-multiplexer, and decoder
Taheri Monfared, Asma; Ciriani, Valentina; Kettunen, Lauri; Haghparast, Majid (Springer, 2023)Designing conventional circuits present many challenges, including minimizing internal power dissipation. An approach to overcoming this problem is utilizing quantum technology, which has attracted significant attention ... -
Design and simulation of efficient combinational circuits based on a new XOR structure in QCA technology
Safaiezadeh, Behrouz; Mahdipour, Ebrahim; Haghparast, Majid; Sayedsalehi, Samira; Hosseinzadeh, Mehdi (Springer, 2021)Quantum-dot cellular automata (QCA), due to its unique characteristics like low power consumption, nanoscale design, and high computing speed is considered as an emerging technology, and it can be used as an alternative ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.