ReO as a Brønsted acidic modifier in glycerol hydrodeoxygenation : Computational insight into the balance between acid and metal catalysis
Korpelin, V., Sahoo, G., Ikonen, R., & Honkala, K. (2023). ReO as a Brønsted acidic modifier in glycerol hydrodeoxygenation : Computational insight into the balance between acid and metal catalysis. Journal of Catalysis, 422, 12-23. https://doi.org/10.1016/j.jcat.2023.03.032
Published in
Journal of CatalysisDate
2023Discipline
Nanoscience CenterOrgaaninen kemiaFysikaalinen kemiaNanoscience CenterOrganic ChemistryPhysical ChemistryCopyright
© 2023 The Author(s). Published by Elsevier Inc.
A computational study for the competitive conversion of glycerol to 1,2-propanediol and 1,3-propanediol is presented, considering a two-step sequence of dehydration followed by hydrogenation. The elementary steps for dehydration, i.e., breaking of C–H followed by C–OH or vice versa, were studied computationally both on the Rh metal surface and the acid-modified ReOH–Rh surface in order to understand the role of the acid promoter. While the acid modifier can catalyze the C–OH cleavage, the activation energy for the C–H cleavage was found to be considerably smaller on both pure and acid-doped Rh(111) surfaces, and breaking the secondary C–H bond is kinetically favored over breaking the terminal C–H bond. This is in complete agreement with experimental protocols favoring the formation of 1,2-propanediol. Another potential feedstock, glycidol, was studied for the epoxide ring opening to yield 1,2-propanediol and 1,3-propanediol, and the reaction was found to be metal-catalyzed even in the presence of acid.
...
Publisher
Elsevier BVISSN Search the Publication Forum
0021-9517Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/182728344
Metadata
Show full item recordCollections
Additional information about funding
GS and KH acknowledge the financial support from Tekes (2671/31/2013). GS would also like to thank SERB, DST-India (project code- ECRA/2016/001975, Date-03.01.2017) and Science and Technology Department, Odisha (project code- 27562800512017/201296ST, Date-24.02.2018) for financial support at NIT Rourkela. The computational resources were provided by the Finnish Grid and Cloud Initiative as well as the CSC – IT Center for Science, Espoo, Finland (https://www.csc.fi/en) ...License
Related items
Showing items with similar title or keywords.
-
Selective Acrolein Hydrogenation over Ligand-Protected Gold Clusters : A Venus Flytrap Mechanism
Mammen, Nisha; Malola, Sami; Honkala, Karoliina; Häkkinen, Hannu (American Chemical Society (ACS), 2022)The catalytic partial hydrogenation of α,β-unsaturated aldehydes is an ideal reaction to understand the selectivity between two different functional groups Here the two functional groups are C═C and C═O, and the hydrogenation ... -
Understanding selective hydrogenation of phenylacetylene on PdAg single atom alloy : DFT insights on molecule size and surface ensemble effects
Ibrahim, Hanan H.; Weckman, Timo; Murzin, Dmitry Yu.; Honkala, Karoliina (Elsevier, 2024)Single atom alloys (SAAs) have proven to be effective catalysts, offering customizable properties for diverse chemical processes. Various metal combinations are used in SAAs and Pd dispersed materials are frequently employed ... -
Computational insight into the selectivity of γ-valerolactone hydrodeoxygenation over Rh(111) and Ru(0001)
Kauppinen, Minttu M.; Szlapa, Ewa N.; González, Escobedo José Luis; Puurunen, Riikka L.; Honkala, Karoliina (Elsevier, 2025)The observed difference in the selectivity towards alkane, ketone, and alcohol hydrodeoxygenation products over Ru and Rh catalysts is explored using a combination of density functional theory and microkinetics. Using ... -
Variants of Surface Charges and Capacitances in Electrocatalysis : Insights from Density-Potential Functional Theory Embedded with an Implicit Chemisorption Model
Huang, Jun; Domínguez-Flores, Fabiola; Melander, Marko (American Physical Society, 2024)Prevalent electrolyte effects across a wide range of electrocatalytic reactions underscore the general importance of the local reaction conditions in the electrical double layer (EDL). Compared to traditional EDLs, the ... -
Synteesikaasun muuntaminen alkoholeiksi ja alkaaneiksi kuparikobolttikatalyytillä
Nikkonen, Ossi (2023)Tämä tutkielma käy läpi tarkemmin synteesikaasun (CO:n ja H2:n seos) muuntamista kuparikobolttikatalyytin kanssa. Tutkielman tapauksessa hiiliketjua kasvatetaan, jotta saadaan alkaaneja ja alkoholeja. Tarkoituksena on ...