Computational insight into the selectivity of γ-valerolactone hydrodeoxygenation over Rh(111) and Ru(0001)
Kauppinen, M. M., Szlapa, E. N., González, E. J. L., Puurunen, R. L., & Honkala, K. (2025). Computational insight into the selectivity of γ-valerolactone hydrodeoxygenation over Rh(111) and Ru(0001). Surface Science, 751, Article 122624. https://doi.org/10.1016/j.susc.2024.122624
Published in
Surface ScienceAuthors
Date
2025Copyright
© 2024 The Authors. Published by Elsevier B.V.
The observed difference in the selectivity towards alkane, ketone, and alcohol hydrodeoxygenation products over Ru and Rh catalysts is explored using a combination of density functional theory and microkinetics. Using
γ-valerolactone as a model compound, we investigate the reaction mechanism in order to identify selectivity determining species. The effect of the coadsorbed water molecule as well as the higher adsorbate surface coverage on reaction barriers and energies is explored as well. The performed calculations suggest that the desired alkane product is formed from a ketone intermediate on Ru, and through both ketone and alcohol on Rh, although the selectivity towars alkane on Rh is much lower than on Ru.
Publisher
ElsevierISSN Search the Publication Forum
0039-6028Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/243589803
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Programme, AoFAdditional information about funding
The computational work was funded by Research Council of Finland (307623) and University of Jyväskylä. The electronic structure calculations were made possible by the computational resources provided by the CSC — IT Center for Science, Espoo, Finland (https://www.csc.fi/en/) and FGCI. The experiments on which this work is based (Supporting Information) were funded by Neste Corporation. J. L. G. E. acknowledges funding from Fortum Foundation (number 201800142) and from the Finnish Foundation for Technology Promotion (number 6712). ...License
Related items
Showing items with similar title or keywords.
-
The role of polaronic states in the enhancement of CO oxidation by single-atom Pt/CeO2
Kauppinen, Minttu M.; Daelman, Nathan; López, Núria; Honkala, Karoliina (Elsevier BV, 2023)Single Atom Catalysts (SACs) have shown that the miniaturization of the active site implies new phenomena like dynamic charge transfer between isolated metal atoms and the oxide. To obtain direct proof of this character ... -
ReO as a Brønsted acidic modifier in glycerol hydrodeoxygenation : Computational insight into the balance between acid and metal catalysis
Korpelin, Ville; Sahoo, Gokarneswar; Ikonen, Rasmus; Honkala, Karoliina (Elsevier BV, 2023)A computational study for the competitive conversion of glycerol to 1,2-propanediol and 1,3-propanediol is presented, considering a two-step sequence of dehydration followed by hydrogenation. The elementary steps for ... -
Understanding selective hydrogenation of phenylacetylene on PdAg single atom alloy : DFT insights on molecule size and surface ensemble effects
Ibrahim, Hanan H.; Weckman, Timo; Murzin, Dmitry Yu.; Honkala, Karoliina (Elsevier, 2024)Single atom alloys (SAAs) have proven to be effective catalysts, offering customizable properties for diverse chemical processes. Various metal combinations are used in SAAs and Pd dispersed materials are frequently employed ... -
Selective Synthesis of Z-Silyl Enol Ethers via Ni-Catalyzed Remote Functionalization of Ketones
Guven, Sinem; Kundu, Gourab; Weßels, Andrea; Ward, Jas S.; Rissanen, Kari; Schoenebeck, Franziska (American Chemical Society (ACS), 2021)We report a remote functionalization strategy, which allows the Z-selective synthesis of silyl enol ethers of (hetero)aromatic and aliphatic ketones via Ni-catalyzed chain walking from a distant olefin site. The positional ... -
A Self-Consistent Charge Density-Functional Tight-Binding Parameterization for Pt-Ru Alloys
Shi, Hongbo; Koskinen, Pekka; Ramasubramaniam, Ashwin (American Chemical Society, 2017)We present a self-consistent charge density-functional tight-binding (SCC-DFTB) parametrization for PtRu alloys, which is developed by employing a training set of alloy cluster energies and forces obtained from Kohn–Sham ...