Variants of Surface Charges and Capacitances in Electrocatalysis : Insights from Density-Potential Functional Theory Embedded with an Implicit Chemisorption Model
Huang, J., Domínguez-Flores, F., & Melander, M. (2024). Variants of Surface Charges and Capacitances in Electrocatalysis : Insights from Density-Potential Functional Theory Embedded with an Implicit Chemisorption Model. PRX Energy, 3, Article 043008. https://doi.org/10.1103/prxenergy.3.043008
Published in
PRX EnergyDate
2024Copyright
© Authors 2024
Prevalent electrolyte effects across a wide range of electrocatalytic reactions underscore the general importance of the local reaction conditions in the electrical double layer (EDL). Compared to traditional EDLs, the electrocatalytic siblings feature partially charged chemisorbates that could blur our long-held views of surface charge densities and differential capacitances—two interrelated quantities shaping the crucial local reaction conditions. Herein, five variants of surface charge density and three variants of differential capacitance in the presence of chemisorbates are defined and compared. A semiclassical model of electrocatalytic EDLs is developed for a quantitative analysis of the differences and interrelationships between these variants of surface charge densities and differential capacitances. It is revealed that the potential- and concentration-dependent net charge on these chemisorbates dramatically changes the surface charge densities and differential capacitances. Specifically, the free surface charge density could decrease as the electrode potential becomes more positive, implying that the corresponding differential capacitance is negative. The relationship between the free and total surface charge densities is analyzed with aid of the concept of electrosorption valency. By linking the electrosorption valency with the differential capacitance in the absence of chemisorbates, we explain the potential and concentration dependence of the former. The conceptual analysis presented in this work has important implications for experimental characterization and first-principles-based atomistic simulations of electrocatalysis and EDL effects. Particularly, we disclose a hidden yet potentially crucial disadvantage of widely employed atomistic simulation models that fix the coverage of chemisorbates. Proposing the self-consistent implicit model as an expedient remedy for this disadvantage, this work contributes to more realistic modeling of electrocatalytic EDLs.
...
Publisher
American Physical SocietyISSN Search the Publication Forum
2768-5608Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/243981749
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Research Fellow, AoFAdditional information about funding
This work is supported by the Initiative and Networking Fund of the Helmholtz Association (Grant No. VH-NG-1709) and the Academy of Finland through Project No. 338228. Computational resources were provided by the CSC-IT Center for Science, Espoo, Finland.License
Related items
Showing items with similar title or keywords.
-
Grand canonical ensemble approach to electrochemical thermodynamics, kinetics, and model Hamiltonians
Melander, Marko M. (Elsevier, 2021)The unique feature of electrochemistry is the ability to control reaction thermodynamics and kinetics by the application of electrode potential. Recently, theoretical methods and computational approaches within the grand ... -
2023 Roadmap on molecular modelling of electrochemical energy materials
Zhang, Chao; Cheng, Jun; Chen, Yiming; Chan, Maria K. Y.; Cai, Qiong; Carvalho, Rodrigo P.; Marchiori, Cleber F. N.; Brandell, Daniel; Araujo, C. Moyses; Chen, Ming; Ji, Xiangyu; Feng, Guang; Goloviznina, Kateryna; Serva, Alessandra; Salanne, Mathieu; Mandai, Toshihiko; Hosaka, Tomooki; Alhanash, Mirna; Johansson, Patrik; Qiu, Yun-Ze; Xiao, Hai; Eikerling, Michael; Jinnouchi, Ryosuke; Melander, Marko M.; Kastlunger, Georg; Bouzid, Assil; Pasquarello, Alfredo; Shin, Seung-Jae; Kim, Minho M.; Kim, Hyungjun; Schwarz, Kathleen; Sundararaman, Ravishankar (IOP Publishing, 2023)New materials for electrochemical energy storage and conversion are the key to the electrification and sustainable development of our modern societies. Molecular modelling based on the principles of quantum mechanics and ... -
Synergistic Bimetallic PdNi Nanoparticles : Enhancing Glycerol Electrooxidation While Preserving C3 Product Selectivity
White, Jai; Terekhina, Irina; Campos dos Santos, Egon; Martín-Yerga, Daniel; Pettersson, Lars G. M.; Johnsson, Mats; Cornell, Ann (American Chemical Society (ACS), 2024)Electrochemical conversion of glycerol offers a promising route to synthesize value-added glycerol oxidation products (GOPs) from an abundant biomass-based resource. While noble metals provide a low overpotential for the ... -
GPAW : An open Python package for electronic structure calculations
Mortensen, Jens Jørgen; Larsen, Ask Hjorth; Kuisma, Mikael; Ivanov, Aleksei V.; Taghizadeh, Alireza; Peterson, Andrew; Haldar, Anubhab; Dohn, Asmus Ougaard; Schäfer, Christian; Jónsson, Elvar Örn; Hermes, Eric D.; Nilsson, Fredrik Andreas; Kastlunger, Georg; Levi, Gianluca; Jónsson, Hannes; Häkkinen, Hannu; Fojt, Jakub; Kangsabanik, Jiban; Sødequist, Joachim; Lehtomäki, Jouko; Heske, Julian; Enkovaara, Jussi; Winther, Kirsten Trøstrup; Dulak, Marcin; Melander, Marko M.; Ovesen, Martin; Louhivuori, Martti; Walter, Michael; Gjerding, Morten; Lopez-Acevedo, Olga; Erhart, Paul; Warmbier, Robert; Würdemann, Rolf; Kaappa, Sami; Latini, Simone; Boland, Tara Maria; Bligaard, Thomas; Skovhus, Thorbjørn; Susi, Toma; Maxson, Tristan; Rossi, Tuomas; Chen, Xi; Schmerwitz, Yorick Leonard A.; Schiøtz, Jakob; Olsen, Thomas; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer (American Institute of Physics, 2024)We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using ... -
Approximating constant potential DFT with canonical DFT and electrostatic corrections
Domínguez-Flores, Fabiola; Melander, Marko M. (AIP Publishing, 2023)The complexity of electrochemical interfaces has led to the development of several approximate density functional theory (DFT)-based schemes to study reaction thermodynamics and kinetics as a function of electrode potential. ...