dc.contributor.author | Bruè, Elia | |
dc.contributor.author | Pasqualetto, Enrico | |
dc.contributor.author | Semola, Daniele | |
dc.date.accessioned | 2023-04-20T11:17:58Z | |
dc.date.available | 2023-04-20T11:17:58Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Bruè, E., Pasqualetto, E., & Semola, D. (2023). Rectifiability of the reduced boundary for sets of finite perimeter over RCD(K,N) spaces. <i>Journal of the European Mathematical Society</i>, <i>25</i>(2), 413-465. <a href="https://doi.org/10.4171/JEMS/1217" target="_blank">https://doi.org/10.4171/JEMS/1217</a> | |
dc.identifier.other | CONVID_182807478 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/86477 | |
dc.description.abstract | This paper is devoted to the study of sets of finite perimeter in RCD(K,N) metric measure spaces. Its aim is to complete the picture of the generalization of De Giorgi’s theorem within this framework. Starting from the results of Ambrosio et al. (2019) we obtain uniqueness of tangents and rectifiability for the reduced boundary of sets of finite perimeter. As an intermediate tool, of independent interest, we develop a Gauss–Green integration-by-parts formula tailored to this setting. These results are new and non-trivial even in the setting of Ricci limits. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | European Mathematical Society - EMS - Publishing House GmbH | |
dc.relation.ispartofseries | Journal of the European Mathematical Society | |
dc.rights | CC BY 4.0 | |
dc.subject.other | set of finite perimeter | |
dc.subject.other | rectifiability | |
dc.subject.other | reduced boundary | |
dc.subject.other | RCD space | |
dc.subject.other | tangent cone | |
dc.subject.other | Gauss–Green formula | |
dc.title | Rectifiability of the reduced boundary for sets of finite perimeter over RCD(K,N) spaces | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202304202592 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 413-465 | |
dc.relation.issn | 1435-9855 | |
dc.relation.numberinseries | 2 | |
dc.relation.volume | 25 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 European Mathematical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | metriset avaruudet | |
dc.subject.yso | differentiaaligeometria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27753 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16682 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.4171/JEMS/1217 | |
dc.type.okm | A1 | |