The Calderón problem for the conformal Laplacian
Lassas, M., Liimatainen, T., & Salo, M. (2022). The Calderón problem for the conformal Laplacian. Communications in Analysis and Geometry, 30(5), 1121-1184. https://doi.org/10.4310/cag.2022.v30.n5.a6
Published in
Communications in Analysis and GeometryDate
2022Discipline
MatematiikkaInversio-ongelmien huippuyksikköMathematicsCentre of Excellence in Inverse ProblemsCopyright
© International Press
We consider a conformally invariant version of the Calderón problem, where the objective is to determine the conformal class of a Riemannian manifold with boundary from the Dirichlet-to-Neumann map for the conformal Laplacian. The main result states that a locally conformally real-analytic manifold in dimensions
can be determined in this way, giving a positive answer to an earlier conjecture [LU02, Conjecture 6.3]. The proof proceeds as in the standard Calderón problem on a real-analytic Riemannian manifold, but new features appear due to the conformal structure. In particular, we introduce a new coordinate system that replaces harmonic coordinates when determining the conformal class in a neighborhood of the boundary.
Publisher
International PressISSN Search the Publication Forum
1019-8385Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/177490574
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds
Krupchyk, Katya; Liimatainen, Tony; Salo, Mikko (Elsevier Inc., 2022)In this article we study the linearized anisotropic Calderón problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a ... -
The Calderón Problem for the Fractional Wave Equation : Uniqueness and Optimal Stability
Kow, Pu-Zhao; Lin, Yi-Hsuan; Wang, Jenn-Nan (Society for Industrial & Applied Mathematics (SIAM), 2022)We study an inverse problem for the fractional wave equation with a potential by the measurement taking on arbitrary subsets of the exterior in the space-time domain. We are interested in the issues of uniqueness and ... -
The Calderón problem for the fractional Schrödinger equation
Ghosh, Tuhin; Salo, Mikko; Uhlmann, Gunther (Mathematical Sciences Publishers, 2020)We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness ... -
The Linearized Calderón Problem on Complex Manifolds
Guillarmou, Colin; Salo, Mikko; Tzou, Leo (Springer, 2019)In this note we show that on any compact subdomain of a K¨ahler manifold that admits sufficiently many global holomorphic functions, the products of harmonic functions form a complete set. This gives a positive answer to ... -
Limiting Carleman weights and conformally transversally anisotropic manifolds
Angulo, Pablo; Faraco, Daniel; Guijarro, Luis; Salo, Mikko (American Mathematical Society, 2020)We analyze the structure of the set of limiting Carleman weights in all conformally flat manifolds, $ 3$-manifolds, and $ 4$-manifolds. In particular we give a new proof of the classification of Euclidean limiting Carleman ...