Näytä suppeat kuvailutiedot

dc.contributor.authorKettunen, Lauri
dc.contributor.authorRossi, Tuomo
dc.date.accessioned2023-02-27T07:41:15Z
dc.date.available2023-02-27T07:41:15Z
dc.date.issued2023
dc.identifier.citationKettunen, L., & Rossi, T. (2023). Systematic derivation of partial differential equations for second order boundary value problems. <i>International journal of numerical modelling: electronic networks devices and fields</i>, <i>36</i>(3), Article e3078. <a href="https://doi.org/10.1002/jnm.3078" target="_blank">https://doi.org/10.1002/jnm.3078</a>
dc.identifier.otherCONVID_160443382
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85647
dc.description.abstractSoftware systems designed to solve second order boundary value problems are typically restricted to hardwired lists of partial differential equations. In order to come up with more flexible systems, we introduce a systematic approach to find partial differential equations that result in eligible boundary value problems. This enables one to construct and combine one's own partial differential equations instead of choosing those from a pre-given list. This expands significantly end users possibilities to employ boundary value problems in modeling. To introduce the main ideas we employ differential geometry to examine the mathematical structure involved in second order boundary value problems and exploit electromagnetism as a working example. This provides us with an organized view on the key building blocks behind boundary value problems. Thereafter the approach is naturally generalized to a class of second order boundary value problems that covers field theories from statics to wave problems. As a result, we obtain a systematic framework to construct partial differential equations and to test whether they form eligible boundary value problems.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJohn Wiley & Sons
dc.relation.ispartofseriesInternational journal of numerical modelling: electronic networks devices and fields
dc.rightsIn Copyright
dc.subject.otheraction principle
dc.subject.othercategory
dc.subject.othercoproduct
dc.subject.otherdifferential forms
dc.subject.otherpartial differential equations
dc.subject.otherproduct
dc.titleSystematic derivation of partial differential equations for second order boundary value problems
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202302271909
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineTutkintokoulutusfi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineDegree Educationen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0894-3370
dc.relation.numberinseries3
dc.relation.volume36
dc.type.versionacceptedVersion
dc.rights.copyright© 2022 John Wiley & Sons Ltd.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokategoriat
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p260
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1002/jnm.3078
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright