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Summary

Software systems designed to solve second order boundary value problems are typically

restricted to hardwired lists of partial differential equations. In order to come up with more

flexible systems, we introduce a systematic approach to find partial differential equations

that result in eligible boundary value problems. This enables one to construct and combine

one’s own partial differential equations instead of choosing those them from a pre-given

list expanding significantly end users possibilities to employ boundary value problems in

modelling. To introduce the main ideas we employ differential geometry to examine the

mathematical structure involved in second order boundary value problems and exploit elec-

tromagnetism as a working example. This provides us with an organized view on the key

building blocks behind boundary value problems. Thereafter the approach is naturally gen-

eralized to a class of second order boundary value problems that covers field theories from

statics to wave problems. As a result, we obtain a systematic framework to construct par-

tial differential equations and to test whether they form eligible boundary value problems.

KEYWORDS:

partial differential equations, action principle, differential forms, product, coproduct, cat-

egory

1 INTRODUCTION

Flexibility is a topical issue in computing as the modern needs in engineering design call for solving multi-physical problems. The existing software
systems, however, typically do not allow the users to choose their own partial differential equations (PDEs) to be solved within boundary value
problems (BVP). Instead, the available PDEs are typically restricted to a pre-given list. While some very nice exceptions, such as GetDP 1, exist, still,
there is no underlying framework that guided which pairs of PDEs form well-posed boundary value problems at the first place.

Historically, the finite element (FEM) kind of systems haven arisen from specific needs such as those of elasticity or electromagnetism. As the
resources of the early computers were minimal, an apparent approach was to design FEM systems for specific needs. By hardwiring the partial
differential equations into the software, it became also easier to prevent the users from establishing inadvertently ill-posed problems.

A modern view on programming, however, does not seek for developing distinct software for every specific problem, but rather, to cover as
many demands as possible with a single system as long as efficiency, clarity, and plainness can bemaintained. In this paper we are after a framework
that enabled to choose "all" pairs of PDEs that compose well-posed second order boundary value problems –"all" should be understood here with
respect to some set or class that is larger than a finite set.

It is plain all the mathematical knowledge required to meet our goal must already exist. The issue is rather to reorganize the required pieces of
knowledge. Field theories are studied in depth and the literature is vast, but they are also presented in many ways. The mixture of interpretations
make it challenging to find a view that condensed into formal terms what the seemingly different theories have actually in common.

0Abbreviations: BVP, boundary value problem; PDE, partial differential equation
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FIGURE 1Maxwell’s house, a functional framework for Maxwell’s equations. 10

The endeavor to compress information is also the key to design apt software. In designing multifunctional software one should also take into
account there is always a trade-off between flexibility and power 2. Hence, it is also justified to ask whether the pursued flexibility would result
in an inefficient software system. The example of GetDP, however, shows such concerns can be overcame; It is the solution process and not the
setup of system equations that requires computing resources. It is plain, if one tried to come up with an all-purpose solver for systems of equations
the trade-off between flexibility and power would pop up.

2 HODGE DECOMPOSITIONS AND MAXWELL’S HOUSE

Let us start from the literature and the structural properties of electromagnetism. Some of the pioneering works in this field are Kotiuga’s PhD-
thesis 3, Tonti diagrams 4, and Bossavit’s study on the curl operator 5. The mathematical background of these studies lies in the generalization
of classical Helmholtz decompositions 6 to Hilbert and Sobolev spaces on bounded domains. Such generalizations are known as Hodge-Kodaira
decompositions 7,8,9. Kotiuga, Tonti and Bossavit exploited Hodge decompositions to the needs of electromagnetic modelling, and Bossavit
conveyed the outcome graphically aptly to what he calls by the name Maxwell’s house 10, see Fig. 1.

The Hilbert space L2(Ω) consists of square integrable fields supported in domain Ω. When it comes to electromagnetism the underlying inner
product has to do with energy or power such as with the energy stored in the electric field, i.e., with 1

2

∫
Ω ε e · e. Accordingly, the Hodge decom-

position can be employed to find mutually orthogonal components of energy or power. The decompositions provide one also with the de Rham
complex 11,12. Hodge decompositions can also be employed to construct systems of equations for field problems as demonstrated in ref. 13.

While the Maxwell house condenses nicely the information of Maxwell’s equations –the value at a node is the sum of its incoming arrows–
the arrows in the Maxwell house are not meant to be composed: If the map e

ε−→ d is joint from the right with d
∂t−−→ j, the composition did not

coincide with map e
σ−→ j. This implies the Maxwell house is a flow graph. To express the framework of Maxwell’s theory with arrow compositions

we need to shift to categories. For, by definition, the arrows, i.e., the so-called morphisms of a category 14,15 have to fulfil the composition law.
Consequently, if the arrows represent functions, then their compositions are also granted.

The Maxwell house is not related to any particular electromagnetic boundary value problem, but rather, it conveys information that should
hold for all electromagnetic problems. To maintain such an idea we need to consider the collection of all the function spaces associated with
electromagnetic fields supported in all possible domains. Functions spaces are sets, but such a collection of functions spaces is hardly a set. Rather,
it is a class. For this reason we aim for categories whose objects are classes of function spaces. This makes it possible to make statements that hold
for all electromagnetic problems.

To summarise, our goal is to come up with a diagram that aptly condensed the information of electromagnetic boundary value problems, but
which is simultaneously a category. The Hodge decompositions yield a firm background for this. Especially so, as the Hodge decompositions are
closely related to the action principle 16,17, which in turn is the key tool to construct PDEs for various needs. As Baez and Munian writes 17: "In
modern physics one rarely starts with differential equations for fields; rather, one derives them from a Lagrangian", that is, from a weak form with
the action principle. In addition, we also notice that the Maxwell house consists of a dual pair of de Rham complexes, where the grad, curl, and div

operators and their adjoints are proxies of the exterior operator and its adjoint, respectively. The exterior derivative and its adjoint are mappings
between differential forms of degree p = 0, . . . , 3. However, to derive PDEs neither the dimension of the domain (i.e., of the manifold ) nor the
degrees of forms are in our primal interest. We are rather interested in all (meaningful) dimensions and in forms of all degrees. This suggests to
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take a step backwards from the Maxwell house and to rebuild the desired framework starting from the Hodge operator, Hodge decompositions,
and the action principle.

3 HODGE OPERATOR AND THE CONSTITUTIVE LAWS

Letn stand for the dimension. TheHodge operator is amap between p- and (n−p)-vector spaces. In electromagnetism it pops up in the constitutive
laws. We would like to stress out the constitutive laws are strictly local. That is, they are maps between cotangent spaces 18,19, that is, between
fibers over a point of a manifold, and the Hodge map over a point has no effect on the fibers over its neighbouring points.

The ⋆-operator is defined by Riesz representation theorem 20,18: Let Vp denote the space of p-vectors. The unitn-vector –the so called "canonical
volume"– is ωn ∈ Vn, and ⟨·, ·⟩ is the inner product of p-vectors. The Hodge operator is the map ⋆ : Vp → Vn−p, v 7→ ⋆v such that for all u ∈ Vp

condition
u ∧ ⋆v = ωn⟨u, v⟩ (1)

holds. For an elementary example, see fig. 2.

u

⋆v

ω3⟨u, v⟩

FIGURE 2 An elementary geometric example of the ⋆ In 3d euclidean space.

To express constitutive laws as a commutative diagram we employ notation (u, ·)u∈V to say argument u goes through all elements of V and
then introduce maps1

hp : {Vp} × Vp → {Vn}, (v′, v)v′∈Vp
7→ ωn⟨v′, v⟩ and hn−p : {Vn−p} × Vn−p → {Vn}, (w′, w)w′∈Vn−p

7→ ωn⟨w′, w⟩.

Let the disjoint union be denoted by ⊔. If we introduce inclusions

ip : {Vp} × Vp → {Vp} × Vp ⊔ {Vn−p} × Vn−p and in−p : {Vn−p} × Vn−p → {Vp} × Vp ⊔ {Vn−p} × Vn−p,

then map

h : {Vp} × Vp ⊔ {Vn−p} × Vn−p → {Vn},
{

ip(v′, v)v′∈Vp
7→ v′ ∧ ⋆v

in−p(w′, w)w′∈Vn−p
7→ w′ ∧ ⋆w ,

factorizes out the common part of maps hp and hn−p. This is to say that

hp = h ◦ ip and hn−p = h ◦ in−p

hold. In terms of function values such a commutation property corresponds with equations

v′ ∧ ⋆v = ωn⟨v′, v⟩ ∀v′ ∈ Vp and w′ ∧ ⋆w = ωn⟨w′, w⟩ ∀w′ ∈ Vn−p,

see fig. 3. This construction is a coproduct, see ref. 21,22.

{Vn}

{Vn−p} × Vn−p{Vp} × Vp ⊔ {Vn−p} × Vn−p{Vp} × Vp

ip in−p

hp : (v′, v)v′∈Vp
7→ ωn⟨v′, v⟩ hn−p : (w′, w)w′∈Vn−p

7→ ωn⟨w′, w⟩

h : (v′, v)v′∈Vp
7→ v′ ∧ ⋆v, (w′, w)w′∈Vn−p

7→ w′ ∧ ⋆w

FIGURE 3 Structure of the constitutive law expressed as a coproduct.

1Symbol {Vp} stands for a set whose only element is the space of p-vectors. The reason we need Vp as an element of a set lies in the Riesz representation
theorem: eq. (1) should hold for all elements u in Vp.
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Remark: The constitutive laws involve also the structural layer of orientation, for details see 23,24,25. For brevity, in this paper we will bypass this.
Example: The dielectric constitutive law d = ε ⋆e. Locally, on ordinary points x of the domain, the 1-covector electric field e is an element of
cotangent space T 1

x . Correspondingly, the electric flux density d ∈ Tn−1
x . (If orientation is taken into account, d is recognized as a so-called twisted

2-covector 26,27,23.) The inner product for the 1-covectors and for the (n − 1)-covectors can be given by ⟨v′, εv⟩ and ⟨w′, 1
ε
w⟩, respectively. The

constitutive laws d = ε ⋆e and e = 1
ε
⋆d correspond with the commutative diagram of fig. 4.

{Tn
x }

{Tn−1
x } × Tn−1

x{T 1
x} × T 1

x ⊔ {Tn−1
x } × Tn−1

x{T 1
x} × T 1

x

ip in−p

(e′, e)e′∈T1
x
7→ ωn⟨e′, εe⟩ (d′, d)

d′∈Tn−1
x

7→ ωn⟨d′, 1
ε
d⟩

(e′, e)e′∈T1
x
7→ e′ ∧ ε ⋆e, (d′, d)

d′∈Tn−1
x

7→ d′ ∧ 1
ε
⋆d

FIGURE 4 A coproduct that corresponds with the equations of dielectric constitutive law.

4 HODGE-KODAIRA DECOMPOSITIONS

Let us now move to Hodge-Kodaira decompositions. For this, we first assume PDEs that are mappings between p and (p + 1)-forms, F p(Ω)
d−→

F p+1(Ω). We assume a sufficiently smooth f ∈ F p(Ω) equipped with boundary condition tf = tff on the component ∂fΩ of boundary ∂Ω.
To maintain the linearity of the exterior derivative, we restrict d to act only on those functions whose trace t vanish on ∂fΩ. We denote such a

restriction of d by df :
dom(df ) = {f ∈ dom(d) | tf = 0 on ∂fΩ}.

Symmetrically, let ∂gΩ, which is the complement of ∂fΩ on the boundary, ∂Ω = ∂fΩ+ ∂gΩ. Then

dom(dg) = {g ∈ dom(d) | tg = 0 on ∂gΩ}

is the restriction of d on ∂gΩ.
The Stokes’ theorem implies for any a′ ∈ F p−1(Ω) and f ∈ F p(Ω)∫

Ω

d(a′ ∧ ⋆f) =

∫
∂Ω

t(a′ ∧ ⋆f) .

Integrating this by parts yields ∫
Ω

da′ ∧ ⋆f − (−1)p
∫
Ω

a′ ∧ d⋆f =

∫
∂Ω

ta′ ∧ t⋆f.

As ⋆⋆ = (−1)p(n−p), this is equivalent to ∫
Ω

da′ ∧ ⋆f − (−1)k
∫
Ω

a′ ∧ ⋆(⋆d⋆f) =

∫
∂Ω

ta′ ∧ t⋆f. (2)

where k = p+ (p− 1)(n− p+ 1). This is Green’s formula.
Now, notice, if (p− 1)-form a′ ∈ dom(df ) and ⋆f ∈ dom(dg), then we have

⟨dfa′, f⟩ = (−1)k⟨a′, ⋆dg⋆f⟩,

which is to say, δg = (−1)k⋆dg⋆ is the adjoint 20 of df .
This provides us with the Hodge-Kodaira decompositions 28 of the Hilbert spaces F p−1(Ω) and F p(Ω): Firstly, the kernel of df is ker(df ) =

{a ∈ F p−1(Ω), dfa = 0}, and its orthogonal complement is ker(df )
⊥ = {a ∈ F p−1(Ω), ⟨a, a′⟩ = 0 ∀a′ ∈ ker(df )}. Secondly, as δg is the

adjoint of df , the complement ker(df )⊥, coincides with cod(δg). 20 Symmetrically, the orthogonal complement of ker(δg) ⊂ F p(Ω) is cod(df ),
and hence, we may write

F p−1(Ω) = ker(df ) ⊕ cod(δg),

F p(Ω) = ker(δg) ⊕ cod(df ).

Next, to express the decomposition F p(Ω) = ker(df )⊕ cod(δg) with a commutative diagram we introduce projections

πf : ker(df ) ⊕ cod(δg) → ker(df ), (f, g) 7→ f,

πg : ker(df ) ⊕ cod(δg) → cod(δg), (f, g) 7→ g.
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Then, for every F p(Ω) and maps

df : F p(Ω) → ker(df ),

{
f 7→ f, if dff = 0

f 7→ 0, if dff ̸= 0

and

dg : F p(Ω) → cod(δg),

{
f 7→ f, if ⟨f, f ′⟩ = 0 ∀f ′ ∈ ker(df )

f 7→ 0, if df = 0 ,

there exist a map d : F p(Ω) → ker(df )⊕ cod(δg) such that

df = πf ◦ d and dg = πg ◦ d

hold. This is a product 21,29, see fig. 5.

F p(Ω)

cod(δg)ker(df )⊕ cod(δg)ker(df )
πf πg

d
df dg

FIGURE 5 The orthogonal decomposition expressed as a product.

5 ACTION PRINCIPLE

Next, let us move to boundary value problems and derive PDEs from the action principle 16,17. At first, we need to introduce an action such as

A =
1

2

∫
Ω

f ∧ ⋆f −
∫
Ω

a ∧ ⋆(⋆h) −
∫
∂Ω

ta ∧ tgg , (3)

where the pair a ∈ F p−1(Ω), f ∈ F p(Ω) fulfils da = f , ⋆h ∈ F p−1(Ω) is a source term, which is assumed to be known a priori. On the boundary
we set ta = taf on ∂fΩ and t⋆f = tgg on ∂gΩ .

As dd ≡ 0, the map dom(d)
d−→ F p(Ω) provides us with the first PDE2{

df = 0 ,

tf = t(daf ) on ∂fΩ .
(4)

Thereafter, by insisting the variation
δA =

d

dα
A(a+ αa′)

∣∣∣∣
α=0

to vanish for all a′ ∈ dom(df ), one gets

δA =

∫
Ω

da′ ∧ ⋆f −
∫
Ω

a′ ∧ ⋆(⋆h) −
∫
∂Ω

ta′ ∧ tgg = 0 ∀a′ ∈ dom(df ). (5)

To derive the second PDE, we employ Green’s formula (2) to write (5) in the form
(−1)k

∫
Ω

a′ ∧ ⋆(⋆d⋆f) =
∫
Ω

a′ ∧ ⋆(⋆h) ∀a′ ∈ dom(df )

t⋆f = tgg on ∂gΩ .
(6)

This is equivalent to
(−1)k⟨a′, ⋆d⋆f⟩ = ⟨a′, ⋆h⟩ ∀a′ ∈ dom(df ) and t ⋆ f = tgg on ∂gΩ .

Consequently, as space dom(df ) is dense in F p(Ω), eq. (5) is the weak form 10 of PDE{
(−1)k⋆dg = ⋆h ,

tg = tgg on ∂gΩ
⇔

{
(−1)kdg = h ,

tg = tgg on ∂gΩ
(7)

where g = ⋆f .
Summing up, from the action A given in (3) the action principle yields (4) in the strong form and (7) in the weak form.
Remark: Notice, as f ∈ F p(Ω) = ker(df ) ⊕ cod(δg), any f ∈ ker(d) with a boundary condition tf = tda on ∂fΩ can be decomposed into

f = ff + daf , where ff ∈ ker(df ) and daf ∈ cod(δg). This is to say there exists a g ∈ F p+1(Ω) that fulfils δgg = dac.

2This, however, assumes the homology of Ω is trivial. If the homology is non-trivial one has to introduce "cuts" 30,31that make all the p-cycles mod ∂fΩ

to bound (p + 1)-cycles mod ∂fΩ. Such "cuts" will imply additional terms, but to avoid unnecessary technical details we will not deal with them here.
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5.1 Diagram of boundary value problems

Our next aim is to find a diagram of boundary value problems, and for this we express first the action principle as a product. We start by specifying
spaces

Da,f = {(a, f) ∈ F p−1(Ω)× F p(Ω) | f = da, ta = taf on ∂fΩ} ,
Df = {f ∈ F p(Ω) | df = 0, tf = t(daf ) on ∂fΩ} ,

Dg(g) = {g ∈ Fn−p(Ω) | dg = h, tg = tgg on ∂gΩ} ,
and

A0 = {g ∈ Fn−p(Ω) |
∫
Ω

da′ ∧ g −
∫
Ω

a′ ∧ ⋆(⋆h) −
∫
∂Ω

ta′ ∧ tgg = 0 ∀a′ ∈ dom(df )} .

The action principle expressed as a product is objectDf ×Dg together with projections

πs : Df ×Dg → Df ,

πw : Df ×Dg → Dg ,

with the condition that for everyDa ×A0 and pairs of maps

s : Da,f ×A0 → Df , ((a, f), g) 7→ f,

w : Da,f ×A0 → Dg , ((a, f), g) 7→ g ,

there exists map b fromDa ∧A0 toDf ∧Dg such that

s = πs ◦ b and w = πw ◦ b

hold, see fig. 6.

Da,f ×A0

DgDf ×DgDf
πs πw

b
s w

FIGURE 6 The action principle expressed as a product.

A boundary value problem consists of a pair of PDEs equipped with the boundary conditions and of the constitutive law. Correspondingly, a
combination of the product of fig. 6 with the constitutive law coproduct of fig. 3 should represent boundary value problems.

For this, recall that p-forms can be interpreted as sections of cotangent bundle T pΩ =
⋃

x∈Ω{x} × T p
x , and the set Γ(T pΩ) of all sections on

Ω coincides with space F p(Ω). We call by πp
x the map that projects f ∈ F p(Ω) at point x ∈ Ω to {T p

x } × T p
x ,

πp
x : F p(Ω) → {T p

x } × T p
x , f 7→ (T p

x , fx) .

Saying, "find pair (f, g) ∈ F p(Ω)× Fn−p(Ω) such that PDEs (4) and (7) and the constitutive law hold", corresponds now to the diagram of fig. 7.

Da,f ×A0

DgDf ×DgDf

{T p
x } × T p

x {Tn−p
x } × Tn−p

x{T p
x } × T p

x ⊔ {Tn−p
x } × Tn−p

x

{Tn
x }

πs πw

b
s w

ip in−p

hp hn−p

h

πp
x πn−p

x

FIGURE 7 The diagram representing boundary value problems: BVPs consists of pairs of PDEs and of the constitutive law that connects the
underlying fields over each point x ∈ Ω. The BVPs themselves are derived from the action principle
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5.2 Finite dimensional counterpart

Before going on, let us briefly notice that the finite element method is a finite dimensional counterpart of (5). To verify this, we first choose a
ac ∈ cod(δg) that fulfils the boundary condition of a, i.e., tac = ta = taf on ∂fΩ. Any ac satisfying the condition is feasible. Thereafter any
f = da ∈ F p(Ω) can be given in the form f = ff + dac where ff ∈ dom(df ). Consequently, instead of (5) we may write

δA =

∫
Ω

da′ ∧ (ff + dac) −
∫
Ω

a′ ∧ ⋆(⋆h) −
∫
∂Ω

ta′ ∧ tgg = 0 ∀a′ ∈ dom(df ),

⇔
∫
Ω

da′ ∧ ⋆ff =

∫
Ω

a′ ∧ ⋆(⋆h)−
∫
Ω

da′ ∧ ⋆dac −
∫
∂Ω

ta′ ∧ tgg ∀a′ ∈ dom(df ) . (8)

Now, if we set a =
∑
i
aiw

p−1
i , where the wp−1

i are the basis functions of Whitney space W p−1, and the ai’s are the degrees of freedom. In

addition, if we chooseW p−1 in place of dom(df ), then (8) corresponds with a finite element kind of system of equations.
For an example, let us consider electrostatics and say the dimension n = 3. In this case the counterpart of f ∈ F p(Ω) is the electric field

e ∈ F 1(Ω). Hence, we have p = 1. We denote the spaces of Whitney p-forms by W p, p = 0, . . . n, and in (8) in place of dom(d) we chose W 0

and instead of a′ ∈ dom(df ) write φ′ ∈ dom(df ) ⊂ W 0. The counterpart of ff ∈ dom(df ) is ef =
∑
i
−d(φiw

0
i ), w

0
i ∈ ker(df ), and the

counterpart of ac is −φc. To express −φc in the Whitney basis, we denote by Xf the set of nodes on ∂fΩ and by φ(xj) the value of tφ at the
node x ∈ Xf indexed by j. Function φc is then given by φc =

∑
j
φ(xj)w

0
j , xj ∈ Xf , and now, the electric field e fulfils boundary condition

te = t(ef − dφc) = −tdφc on ∂FΩ. On the complement ∂gΩ the boundary condition to the electric flux is imposed by writing t(ε ⋆e) = tdg .
Finally, in place of ⋆ we write ε⋆, where ε is permittivity.

The finite dimensional counterpart of (8) is now

−
∫
Ω

dw0
i ∧ ε ⋆

∑
j

d(φjw
0
j ) =

∫
Ω

w0
i ∧ ρ+

∫
Ω

w0
i ∧ ε ⋆

∑
j

d(φc(xj)w
0
j ) −

∫
∂Ω

tw0
i ∧ tdg ∀w0

i ∈ dom(df ) ,

which we recognize as the finite element formulation of the electrostatic field.
This example exemplifies representation of boundary value problems in finite dimensional spaces and the significance of Whitney forms.

6 "ALL" BOUNDARY VALUE PROBLEMS

The aim is to find a systematic approach to construct "all" pairs of PDEs that compose well-posed second order boundary value problems. To
move in this direction, next we will derive at once the PDEs for all differential forms p = 0, . . . n on a four dimensional Minkowski manifold. The
manifold is equippedwith ametric tensor and signature (−,+,+,+). Themetric tensormakes it possible to introduce aHodge operator andHodge
decompositions also to a Minkowski manifold. To distinct between the Hodge operator on Minkowski and Riemannian manifolds, we denote the
Hodge operator on the Minkowski manifold by ∗. Under the assumptions made we have ∗∗ = (−1)p(n−p)+1.

As the degree p of the differential forms is not in our primal interest, we bury all the degrees into a formal sum of all p-form spaces

F (Ω) =

n⊕
p=0

F p(Ω) .

This is to say, all degrees are of equal significance. This also implies the elements of F (Ω) are formal sums of differential form degree p = 0, . . . , n

such as f = f0 + f1 + f2 + f3 + f4 ∈ F (Ω).
Our aim is now to extend differential operator d and its adjoint δg to the elements of F (Ω). This will then enable us to write PDEs for any

f ∈ F (Ω). For this we pick a h ∈ F (Ω) and decompose the hp ∈ F p(Ω), p = 0, . . . 4 into components in ker(df ) and cod(δg) by writing

Df = h ⇔



−δg

df δg

df −δg

df δg

df





f0

f1

f2

f3

f4


=



h0

h1

h2

h3

h4


. (9)

These decompositions are in space-time, while boundary value problems are solved in space and time. Accordingly, we assumeΩ is decomposed
into space and time. To replace (9) with space and time-like equations we also decompose fp ∈ F p(Ω) into fp = fp

t + fp
s , where subscripts s

and t refer to space and time-like components, respectively. In the same manner the exterior derivative is decomposed into d = dt∧ ∂t +ds. The
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derivatives of fp can then be given in space and time by

df0 = dt ∧ ∂tf0 + dsf0 ,

dfp = dt ∧ ∂tf
p
s + dsfp

t + dsfp
s , ∀p > 0 ,

δfp = ∗d∗fp = ⋆dt ∧ ∂t⋆f
p
t + ⋆ds⋆fp

t + ⋆ds⋆fp
s , ∀p < n ,

δfn = ∗d∗fn = ⋆dt ∧ ∂t⋆fn
t + ⋆ds⋆fn

t .

(10)

Here, as our aim is only to work out PDEs that hold withinΩ = Ωt×Ωs. For this reason we may neglect the boundary conditions, and accordingly,
there is no need to write df and δg in place of d and δ.

With (10) it can now be shown that the counterpart of (9) in space and time is (here fp and hp are space-like p-forms, and F p and Hp are the
space-like components of (p+ 1)-forms dt ∧ F p and dt ∧Hp, for details, see 32):

∂t −d

⋆∂t⋆ d

∂t ⋆d⋆ −d

⋆∂t⋆ ⋆d⋆ d

⋆d⋆ −d ∂t

⋆d⋆ d −⋆∂t⋆

⋆d⋆ ∂t

⋆d⋆ −⋆∂t⋆





f3

F 3

f1

F 1

f2

F 2

f0

F 0


=



H3

h3

H1

h1

H2

h2

H0

h0


, (11)

Eq. (11) provides us with the desired class of all PDEs expressible with ordinary differential forms. This class covers wave problems, quasistatic
problems as well as static ones. Particular PDEs are obtained with appropriate choices of F andH .

6.1 Examples

For an example let us demonstrate that Maxwell’s equations is a particular instance of this class; Let us denote the electric field strength and
magnetic flux density by e and b, respectively, and imbed permittivity ε, permeability µ, and reluctivity ν = 1/µ into the inner product involved in
the definition of the Hodge operator ⋆. Now,

the choice


F 1 = −e

f2 = b

h1 = ⋆j

H0 = −⋆q

results in


db = 0

de+ ∂tb = 0

−⋆∂t⋆εe+ ⋆d⋆νb = ⋆j

−⋆d⋆εe = −⋆q

⇐⇒


db = 0

de+ ∂tb = 0

−∂t⋆εe+ d⋆νb = j

d⋆εe = q

.

For another example, the choice f2 = g, h1 = −⋆4πGρ –where g is the gravitational field,G the universal gravity constant, and ρ is mass density–
yields the Newtonian gravity field dg = 0 and d⋆g = −4πGρ. For further details, see ref. 32.

Summing up, the system of equations (11) answers the question, how to find systematically PDEs for ordinary differential forms, and (7) answers
to the question, when a boundary value problem is well posed, and Whitney forms make it possible to express such BVPs systematically in finite
dimensional spaces.

6.2 Extension of the class: E-valued forms

Not all boundary value problems are expressible in ordinary forms. Elasticity, which calls for so-called E and E∗-valued forms –also called by the
name vector and covector -valued forms– is a good example of this. Vector and covector valued forms are differentiated with the covariant exterior
derivative d∇, where ∇ is a connection. For a very good exposition, see ref. 17. In addition, the standard definitions of the wedge product and
the Hodge operator need also to be generalized to E and E∗-valued forms. Despite of this, PDEs can still derived and boundary value problems
established in the same way as in case of ordinary differential forms.

For an example, boundary value problems of small-strain elasticity can also be formulated exploiting the structure shown in fig. 7. To find the
basic equations, notice, displacement is anE-valued 0-form ν, and the time derivative of this is velocity u = ∂tν. The body force fV is anE-valued
3-form, stress σ is aE∗-valued 2-form, and the linearized strain ε is anE-valued 1-form obtained by differentiating displacement, ε = d∇ν. 33,34,35

The stress-strain relation is given by σ = ⋆Cε, where C is the so-called tensor of elasticity 16,36, which we imbed into the Hodge operator. The
basic equations of elasticity are now obtained from system (11), where d is replaced with d∇, and the wedge product and the Hodge operator are
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extended to their counterparts for E and E∗-valued forms, as follows:

the choice


F 0 = u

f1 = ε

g0 = −⋆fV

results in


−∂tε+ d∇u = 0

d∇ε = 0

⋆d∇⋆Cε− ⋆∂t⋆ρu = −⋆fV

⇐⇒


−∂tε+ d∇u = 0

⋆ρ ∂tu− d∇σ = fV

σ = ⋆Cε, u = ∂tν

.

This suggests a recipe to find a very large class of boundary value problems: Extend system (11) and the structure shown in fig. (7) to E and
End(E)-valued forms 17 in all meaningful dimensions. Such an approach seems to provide one with solid foundations to software systems like
GetDP to enable users to establish and solve their own problems.

7 CONCLUSION

We have expressed the structure of second order boundary value problems to come up with a system from which a class of PDEs can be derived.
In addition, we have formalized the use of action principle to answer the question, when a boundary value problem is well posed. These results
can be exploited in system designed to solve numerically second boundary value problems laying some foundations for machines to check and
find end users unintended mistakes in feeding in boundary value problems.
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