Optimal solutions for a free boundary problem for crystal growth
Neittaanmäki P., Seidman T. (1989). Optimal solutions for a free boundary problem for crystal growth. In F. Kappel, K. Kunich & W. Schappacher (Eds) Control and Estimation of Distributed Parameter System, pp. 323-334.
Date
1989Access restrictions
Copyright
© Birkhäuser
We consider a free boundary problem modeling the growth / dissolution of a crystal in a radially symmetric setting. Existence of an optimal boundary control, minimizing a cost functional of a standard "integral-quadratic" form, is already known and we here consider the characterization and computation of such an optimal control.
Publisher
BirkhäuserIs part of publication
Control and Estimation of Distributed Parameter SystemKeywords
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Systematic derivation of partial differential equations for second order boundary value problems
Kettunen, Lauri; Rossi, Tuomo (John Wiley & Sons, 2023)Software systems designed to solve second order boundary value problems are typically restricted to hardwired lists of partial differential equations. In order to come up with more flexible systems, we introduce a systematic ... -
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Harnack’s inequalities and boundary regularity for a general nonlinear parabolic equation in non-divergence form
Kurkinen, Tapio (Jyväskylän yliopisto, 2024)Tässä väitöskirjassa tutkitaan epälineaarista parabolista yhtälöä, jonka erikoistapauksina saadaan <i>p</i>-parabolinen yhtälö ja normalisoitu <i>p</i>-parabolinen yhtälö. Yhtälö poikkeustapauksia lukuunottamatta ei ole ... -
Reliable Numerical Solution of a Class of Nonlinear Elliptic Problems Generated by the Poisson–Boltzmann Equation
Kraus, Johannes; Nakov, Svetoslav; Repin, Sergey (Walter de Gruyter GmbH, 2020)We consider a class of nonlinear elliptic problems associated with models in biophysics, which are described by the Poisson–Boltzmann equation (PBE). We prove mathematical correctness of the problem, study a suitable class ... -
Inverse problems for elliptic equations with fractional power type nonlinearities
Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko; Tyni, Teemu (Elsevier, 2022)We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain ...