Näytä suppeat kuvailutiedot

dc.contributor.authorSaini, Bhupinder Singh
dc.contributor.authorChakrabarti, Debalay
dc.contributor.authorChakraborti, Nirupam
dc.contributor.authorShavazipour, Babooshka
dc.contributor.authorMiettinen, Kaisa
dc.date.accessioned2023-02-15T10:14:22Z
dc.date.available2023-02-15T10:14:22Z
dc.date.issued2023
dc.identifier.citationSaini, B. S., Chakrabarti, D., Chakraborti, N., Shavazipour, B., & Miettinen, K. (2023). Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework. <i>Engineering Applications of Artificial Intelligence</i>, <i>120</i>, Article 105918. <a href="https://doi.org/10.1016/j.engappai.2023.105918" target="_blank">https://doi.org/10.1016/j.engappai.2023.105918</a>
dc.identifier.otherCONVID_176815188
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85479
dc.description.abstractSolving real-life data-driven multiobjective optimization problems involves many complicated challenges. These challenges include preprocessing the data, modelling the objective functions, getting a meaningful formulation of the problem, and supporting decision makers to find preferred solutions in the existence of conflicting objective functions. In this paper, we tackle the problem of optimizing the composition of microalloyed steels to get good mechanical properties such as yield strength, percentage elongation, and Charpy energy. We formulate a problem with six objective functions based on data available and support two decision makers in finding a solution that satisfies them both. To enable two decision makers to make meaningful decisions for a problem with many objectives, we create the so-called MultiDM/IOPIS algorithm, which combines multiobjective evolutionary algorithms and scalarization functions from interactive multiobjective optimization methods in novel ways. We use the software framework called DESDEO, an open-source Python framework for interactively solving multiobjective optimization problems, to create the MultiDM/IOPIS algorithm. We provide a detailed account of all the challenges faced while formulating and solving the problem. We discuss and use many strategies to overcome those challenges. Overall, we propose a methodology to solve real-life data-driven problems with multiple objective functions and decision makers. With this methodology, we successfully obtained microalloyed steel compositions with mechanical properties that satisfied both decision makers.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesEngineering Applications of Artificial Intelligence
dc.rightsCC BY 4.0
dc.subject.otherdata-driven evolutionary computation
dc.subject.othermultiple criteria optimization
dc.subject.othersurrogate-assisted optimization
dc.subject.othermultiple decision makers
dc.subject.otherinteractive optimization
dc.subject.otheropen-source software
dc.titleInteractive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202302151762
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineMultiobjective Optimization Groupfi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiainePäätöksen teko monitavoitteisestifi
dc.contributor.oppiaineMultiobjective Optimization Groupen
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineDecision analytics utilizing causal models and multiobjective optimizationen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0952-1976
dc.relation.volume120
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber322221
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysooptimointi
dc.subject.ysometallurgia
dc.subject.ysopäätöksentukijärjestelmät
dc.subject.ysointeraktiivisuus
dc.subject.ysometalliseokset
dc.subject.ysoavoin lähdekoodi
dc.subject.ysofysikaaliset ominaisuudet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p13477
jyx.subject.urihttp://www.yso.fi/onto/yso/p9336
jyx.subject.urihttp://www.yso.fi/onto/yso/p27803
jyx.subject.urihttp://www.yso.fi/onto/yso/p10823
jyx.subject.urihttp://www.yso.fi/onto/yso/p4519
jyx.subject.urihttp://www.yso.fi/onto/yso/p17089
jyx.subject.urihttp://www.yso.fi/onto/yso/p1174
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.engappai.2023.105918
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis research was partly funded by the Academy of Finland (grant 322221). The research is related to the thematic research area Decision Analytics utilizing Causal Models and Multiobjective Optimization (DEMO), jyu.fi/demo, at the University of Jyvaskyla.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0