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A B S T R A C T

Solving real-life data-driven multiobjective optimization problems involves many complicated challenges.
These challenges include preprocessing the data, modelling the objective functions, getting a meaningful
formulation of the problem, and supporting decision makers to find preferred solutions in the existence
of conflicting objective functions. In this paper, we tackle the problem of optimizing the composition of
microalloyed steels to get good mechanical properties such as yield strength, percentage elongation, and
Charpy energy. We formulate a problem with six objective functions based on data available and support
two decision makers in finding a solution that satisfies them both. To enable two decision makers to
make meaningful decisions for a problem with many objectives, we create the so-called MultiDM/IOPIS
algorithm, which combines multiobjective evolutionary algorithms and scalarization functions from interactive
multiobjective optimization methods in novel ways. We use the software framework called DESDEO, an
open-source Python framework for interactively solving multiobjective optimization problems, to create the
MultiDM/IOPIS algorithm. We provide a detailed account of all the challenges faced while formulating and
solving the problem. We discuss and use many strategies to overcome those challenges. Overall, we propose
a methodology to solve real-life data-driven problems with multiple objective functions and decision makers.
With this methodology, we successfully obtained microalloyed steel compositions with mechanical properties
that satisfied both decision makers.
. Introduction

Digitalization sheds light on new data collection and information
haring methods, leading the world towards a data-centered era and
pens up many opportunities for novel data-based methodology de-
elopments in data analytics and decision-making. However, various
lements and challenges are involved in any decision-making process,
tarting from data.

Decision makers (DMs), in many real-life problems, often need to
onsider multiple objectives functions (or objectives, in brief), simulta-
eously when making decisions. In a decision-making process involving
ata, they first need to identify the objectives to be optimized with the
elp of the data available and the independent variables that control
hem. This process may require the data to be preprocessed. A mul-
iobjective optimization problem (MOP) that considers the objectives
mportant to the DMs can then be formulated. A DM is expected to

∗ Corresponding author.
E-mail address: bhupinder.s.saini@jyu.fi (B.S. Saini).

1 Note that optimization is required in problems where solution alternatives are not known. Instead, we optimize objective functions which depend on the
ndependent, so-called decision variables to find the solutions.

be a domain expert. An analyst, who is an expert in multiobjective
optimization,1 typically coordinates the formulation of the MOP with
the DMs and supports in solving it.

One of the ways to solve data-driven MOPs is to use surrogate-
assisted optimization algorithms (Chugh et al., 2019; Jin et al., 2021).
They use regression models, called surrogate models, to mimic the
behaviour of the objectives as recorded in the data. In this, we as-
sume that the data has been obtained from phenomena that can be
treated as objectives to be optimized. The choice of surrogate modelling
techniques to model the objectives and the methods of training and
validating the models significantly impact the solutions found by the
optimization method.

MOPs generally do not have a single optimal solution. Instead,
due to potentially conflicting objectives, there exist many so-called
Pareto optimal solutions that reflect the trade-offs between the various
objectives (Miettinen, 1999). Many optimization algorithms aim to find
ttps://doi.org/10.1016/j.engappai.2023.105918
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Fig. 1. A schematic of the seamless chain from data to decision-making.
Source: Adapted from http://jyu.fi/demo.
representative approximation of the Pareto optimal solutions, see,
.g. Branke et al. (2008), Miettinen (1999). However, such algorithms
an return upwards of a thousand solutions to the DMs. Comparing
any solutions, especially in problems with many objectives, can be
cognitively challenging task. Thus, without assistance, DMs may find

t difficult to make decisions in such problems.
One way to tackle this challenge is to use interactive methods for

ultiobjective optimization (Miettinen, 1999). Such methods incorpo-
ate the preferences of a DM during the optimization process to focus
n Pareto optimal solutions that the DM prefers. Interactive methods
earch for new solutions iteratively, i.e., once the DM sees the solutions
iscovered using their preferences, they can learn about the trade-
ffs and interdependencies among the objective functions as well as
bout the feasibility of preferences. If satisfied, the DM can select a
olution they like as the final solution. Alternatively, if they do not
ike the solutions, they can interact with the method by providing new
references to the method, signifying interest in a different set of trade-
ffs. The interactive method then provides them with new solutions
hat reflect the new preferences. Focusing the search in a smaller area
elps interactive methods find Pareto optimal solutions quicker and
educes the number of alternative solutions that a DM must consider at
time. This process enables the DM to learn about the possible trade-

ffs in the MOP in manageable and iterative steps, making the task of
inding preferable solutions easier.

The process of problem formulation, optimization and decision-
aking is called a seamless chain (Heikkinen et al.). We show a simple

chematic of the steps involved in data-based decision-making in Fig. 1.
imilar schematics for data-driven MOPs solved using non-interactive
ethods have also been proposed (Jin et al., 2021). The figure presents
simple, linear pathway from data and modelling to multiobjective

ptimization and decision-making.
However, solving real-life MOPs can be a more complicated process.

t must involve lengthy deliberations between the DM and the analyst
o formulate a meaningful MOP. The data may introduce constraints
imiting which objectives the DMs can consider in their MOP and how
he analyst can model such objectives. The optimization and decision-
aking steps may reveal significant issues in the problem formulation

f modelling phases. This would require going back and fixing the
ssues in the earlier steps and conducting optimization and decision-
aking again. The presence of more than one DM can also complicate

he consideration, as most interactive methods are designed for a single
M. Although various data-driven optimization applications have been

ntroduced in the literature, most of them are limited to explaining the
esults and miss reporting practical challenges and how they overcome
hose issues. Indeed a suitable framework or guidelines are lacking. To
ill this gap, in this paper, we propose a more realistic representation of
he seamless chain that will benefit both analysts and DMs by providing
hem with a structured guideline to tackle challenges associated with
eal-life data-driven MOPs.

The major contributions of this paper are as follows:

1. Microalloyed steel design problem: We formulate and solve a
data-driven MOP with six objectives to obtain alloy compositions
that optimize multiple mechanical properties of microalloyed
steel. To achieve this, we follow the seamless chain structure to
make the most efficient use of the data available. We discuss
2

in detail the challenges we faced during the modelling and the
solution process, and the steps we took to overcome them.

2. Novel interactive method: We developed the interactive Mul-
tiDM/IOPIS (multiple decision makers supported using IOPIS)
algorithm, an extension of the IOPIS algorithm (Saini et al.,
2020), to support multiple DMs to find a solution that meets
their different preferences. The new method can be applied
for group decision making. In this paper, we use the Mul-
tiDM/IOPIS algorithm to support two DMs simultaneously to
solve the microalloyed steel design problem.

3. An updated seamless chain: We provide a detailed explanation
of all the steps we took to solve the microalloyed steel design
problem. We used many established techniques, and created new
and novel techniques. We provide an updated schematic of the
seamless chain to reflect the challenges faced while solving real
data-driven MOPs. By providing our detailed observations of the
tools and techniques used, we present a guideline to solve
data-driven MOPs interactively.

In Section 2, we establish the core background concepts. In Sec-
tions 3 and 4, we describe the various steps involved in formulating and
solving the MOP, respectively. Section 3 covers the first two steps of the
seamless chain, whereas Section 4 covers the last two steps. We start in
Section 3 by describing the dataset which contains information about
alloys of microalloyed steels, training surrogate models, and formulat-
ing the MOP. More specifically, the dataset contains the compositions
and the corresponding values of various metallurgical properties of the
alloys. We then discuss the tools and strategies used to preprocess the
data to make it suitable for use in MOPs. Following this, we test a
large number of surrogate modelling techniques to find the ones that
work best with the data. Finally, using the results of the previous steps,
and with the help of the DMs, we formulate meaningful MOPs to be
solved. In Section 4 we use the open-source software framework called
DESDEO2 (Misitano et al., 2021) to implement the MultiDM/IOPIS
algorithm and solve the MOPs interactively with two DMs. We also use
two non-interactive optimization methods and compare the results.

It should be noted that the process of problem formulation and
solution is usually an iterative one: we update the methodologies
used in earlier steps based on the results obtained in the later steps.
However, in Sections 3 and 4 we provide a linear narrative of the steps
involved for the benefit of the reader. In Section 5, we discuss the
effectiveness of the various steps we took to solve the MOP, including
steps that did not succeed. We also discuss the insights gained via the
seamless chain process. In doing so, we provide a general framework
(i.e., not limited to the application considered) and a guideline to solve
data-driven MOPs. Finally, in Section 6, we conclude and mention some
future research directions.

The aim of the article is not just to solve a challenging MOP.
Instead, we use the MOP to showcase how to tackle various challenges
encountered in data-driven MOPs and decision making with multiple
DMs. We describe the tools we used during various steps of the seamless
chain, and also discuss why we use them. We also implemented the
MultiDM/IOPIS algorithm to enable multiple DMs to control the inter-
active optimization process and find a mutually satisfactory solution.

2 https://desdeo.it.jyu.fi

http://jyu.fi/demo
https://desdeo.it.jyu.fi
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We make all algorithms proposed in the article openly available to fa-
cilitate future research in data-driven optimization and group decision
making.

2. Background

2.1. Multiobjective optimization

This paper considers the following form of a multiobjective opti-
mization problem:

minimize {𝑓1(𝐱),… , 𝑓𝑘(𝐱)}
subject to 𝐱 ∈ 𝑆 ⊂ R𝑛,

(1)

where 𝐱 = (𝑥1,… , 𝑥𝑛)𝑇 represents decision vectors (vectors of decision
variables) in the feasible region 𝑆 of the decision space R𝑛. The number
f objective functions is 𝑘 and the vectors of objective function values,
enoted by 𝐟 (𝐱) = (𝑓1(𝐱),… , 𝑓𝑘(𝐱))𝑇 , are defined as objective vectors

belong to the objective space R𝑘.
Because the analytical form of functions is not available in data-

driven optimization problems, the decision variables and their corre-
sponding objective function values are often collected from simulators,
real-life processes, or experiments and are only available in a dataset
format. In such problems, approximation models, also called surrogates
(or metamodels), are created, using the available data to approxi-
mate objective function values. Then, these surrogates are utilized to
perform the optimization process. Surrogates may also be utilized as
replacements for computationally expensive functions or simulators to
reduce the evaluation time and save computations resources (Chugh
et al., 2016; Tabatabaei et al., 2015). When collecting new data is not
possible during the optimization process, as in the case of this paper,
the problem is called an offline data-driven optimization (Wang et al.,
2018) problem. It means that the constructed surrogates cannot be
updated with some new data.

Typically, in MOPs, identifying a single optimum is not possible be-
cause of the existing conflict between the objective functions. Instead,
multiple (can be infinitely many) so-called Pareto optimal solutions ex-
ist, where improving any objective function value is impossible without
impairment in at least one of the other objective function values. The
set of Pareto optimal objective vectors in the objective space is called a
Pareto front. DM needs to compare Pareto optimal solutions, study the
existing trade-offs between objectives, and choose the most preferred
one based on their preferences. Besides the DM, an analyst (or a group
of analysts) is responsible for performing the analyses, computations,
and supporting the interactive decision-making process. Generally, an
analyst can be a human or a computer program (Miettinen et al., 2008).

Based on when preference information is incorporated, multiobjec-
tive optimization methods can be classified as a priori, a posteriori, and
interactive methods (Miettinen, 1999). DM provides their preferences
before and after the solution process, respectively, in a priori and
a posteriori methods. Providing unrealistic preferences is the major
shortcoming of the a priori method, particularly if the DMs do not have
prior deep insight into the problem. On the other hand, computational
cost of generating a representative set of Pareto optimal solutions and
heavy cognitive loads of many comparisons are the main difficulties
in using the a posteriori methods, especially when there are many
objectives (Deb and Saxena, 2006; Ishibuchi et al., 2008).

When the DM actively directs the solution process by providing pref-
erences iteratively, the multiobjective optimization method is called
interactive (Miettinen, 1999; Miettinen et al., 2008). In this way, the
DM can learn about the interdependencies of the objectives in the
problem and the feasibility of their preferences. Furthermore, these
methods limit both cognitive and computational load since only a
limited amount of information needs to be analyzed at a time, and
only solutions reflecting the DM’s preferences need to be generated,
respectively. The DM can pursue the interactions by adjusting the
preferences until they get satisfied and converge to the most preferred
solution (see Miettinen et al., 2008 for more details).
3

There are different ways to solve MOPs (see, e.g., Branke et al.,
2008; Miettinen, 1999; Miettinen et al., 2008); among them, one
widely used approach is to transform the MOP into an equivalent
single-objective problem utilizing a so-called scalarization function
while incorporating DM’s preferences (Miettinen, 1999; Miettinen and
Mäkelä, 2002; Ruiz et al., 2009). The scalarized MOP can then be
solved using an appropriate single objective optimizer, resulting in one
or more Pareto optimal solutions that reflect the preferences to satisfy
the DM.

Another way to solve MOPs is to use multiobjective evolutionary
algorithms (MOEAs) (Branke et al., 2008; Ishibuchi et al., 2008). They
are metaheuristic approaches which use a ‘‘population’’ of solutions
simultaneously to mimic the process of evolution. Popular MOEAs such
as RVEA (Cheng et al., 2016) and NSGA-III (Deb and Jain, 2014)
have proven to be successful at generating a representative set of
Pareto optimal solutions for MOPs with many objectives. However,
MOPs become exponentially more difficult to solve with an increasing
number of objectives (Deb and Saxena, 2006). The DESDEO framework
provides open-source and modular Python implemenetations of RVEA
and NSGA-III (and many other MOEAs), as well as many scalarization
functions and interactive methods (Misitano et al., 2021). The DESDEO
framework is the only open-source framework designed for optimiza-
tion using interactive methods (Misitano et al., 2021). Its modularity
enables easy creation of new interactive methods using components of
other interactive methods implemented in the framework.

The IOPIS algorithm (Saini et al., 2020) provides a middle ground
between using scalarization functions (which optimize in a single di-
mension) and MOEAs (which generally optimize in the objective space
with many dimensions). The IOPIS algorithm incorporates a DM’s pref-
erences using multiple scalarization functions (typically fewer than the
number of objectives in the original problem). Together, these functions
form a new space called a preference incorporated space (PIS). An
appropriate MOEA is then used to optimize in this new space, making
the MOEA interactive (since preferences are incorporated). An analyst
can therefore control the number of dimensions in which the MOEA
optimizes by changing the number of scalarization functions, which
form the PIS.

The IOPIS algorithm is of note as it enables easy and modular
creation of interactive MOEAs. Moreover, as shown in Saini et al.
(2020), it guarantees that the interactive MOEAs will have the bene-
ficial properties of optimality (the solutions found by the MOEA are
Pareto optimal), preferability (the solutions found by the MOEA follow
the preferences of the DM), and searchability (the MOEA enables the
DM to find any Pareto optimal solution by changing the preferences).
However, the IOPIS algorithm was originally designed for solving MOPs
with a single DM.

2.2. Microalloyed steels

As mentioned, we consider a data-driven problem of microalloyed
steel. Steels used for structural, linepipe and naval applications must
meet strict performance standards and withstand mechanical stresses
imposed in such applications without failure. Microalloyed steels3 ex-
hibit the required high strength, toughness, ductility, and weldabil-
ity capacity (Kim, 1983). Entities such as the British and European
standards (BS EN standards), the American petroleum institute (API
standards), and the US naval sea systems command (military or MIL
standards) have published standards for usage of microalloyed steels
in various domains. Each published standard includes one or more
grades of microalloyed steel which set the minimum requirements
and maximum bounds that should be met by the steel for specific
applications.

Yield strength (YS) and ultimate tensile strength (UTS) are two
important measures of the strength of materials. The YS measures the

3 A subcategory of high-strength low-alloy steels.
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maximum stress (force per unit area) a material can sustain before
undergoing permanent (plastic) deformation. Below the YS, the ma-
terial deforms elastically, i.e., it reverts to its original shape and size
after removing the external force. The UTS measures the maximum
stress a material can sustain before undergoing a fracture. Percentage
elongation (ELON) measures the ductility as the fractional increase in
the length of a specimen that undergoes fracture upon reaching the
UTS.

We can use Charpy impact tests to measure the toughness of mate-
rials at various temperatures. The test measures the energy required to
fracture a standard specimen made from the material using an impact.
The Charpy impact energy generally decreases at lower temperatures as
ductile materials (such as steels) start showing brittle behaviour at such
temperatures. Good toughness at low temperatures is required for steels
used at such temperatures. The result of these tests can be reported
as Charpy energy values at specific temperatures or impact transition
temperature (ITT) values at specific Charpy energy values.

The aforementioned mechanical properties of microalloyed steels
depend strongly on the composition of the steel alloy. For example, in
minute quantities, alloying elements such as titanium, molybdenum,
and vanadium generally positively affect the strength, ductility, and
toughness of microalloyed steels. However, they can hinder the ability
of structures made from such steels to be welded. The weldability of
steels is correlated with the carbon equivalent (𝐶𝑒𝑞), which can be
calculated as (Lancaster, 1999):

𝐶𝑒𝑞 = %𝐶 + %𝑀𝑛 + %𝑆𝑖
6

+ %𝐶𝑟 + %𝑀𝑜 + %𝑉
5

+ %𝐶𝑢 + %𝑁𝑖
15

. (2)

The terms on the right-hand side of (2), %𝐶,%𝑀𝑛,%𝑆𝑖,%𝐶𝑟,%𝑀𝑜,%𝑉 ,
𝐶𝑢, and %𝑁𝑖 measure the concentration of the alloying elements car-
on, manganese, silicon, chromium, molybdenum, vanadium, copper,
nd nickel as a mass percentage respectively. Various steel grades set
ifferent upper limits to the acceptable levels of 𝐶𝑒𝑞 to account for
eldability needs.

For different applications, different compositions of steels are need-
d which satisfy the various standards mentioned previously. There-
ore, there is a need to formulate and solve MOPs to design microal-
oyed steel compositions. Past studies (Roy et al., 2020; Chakraborti,
022) have considered MOPs with up to three objectives to design mi-
roalloyed steels. These studies solved the MOPs using non-interactive
OEAs.

. Preprocessing, surrogate modelling and problem formulation

In this section, we follow the first two steps of the seamless chain
o formulate an MOP. We first describe the characteristics of the raw
ata we used for our study in the text below. Then in Section 3.1, we
reprocess the raw data to use it in later steps. In Sections 3.2 and
.3, we train and validate surrogate models using the processed data.
inally, in Section 3.4, we formulate two MOPs using the surrogate
odels for the microalloyed steel composition design problem.

The raw dataset, compiled from a database and available in the
ESDEO framework, contains details about the metallurgical properties
f microalloyed steels. There are 736 rows and 51 columns in the
ataset. Each row denotes information related to microalloyed steel of
specific composition, which we later refer to as a sample. The first

wenty columns contain information about the concentration of various
lloying elements. The rest of the columns contain information about
arious metallurgical properties of the samples. The first three among
hese are YS, UTS, and ELON. The next ten columns denote the ITT
t ten different Charpy impact energy levels (ranging from 13 J to 80
). The next six columns measure the Charpy impact energy value at
ifferent temperatures (ranging from −80 ◦C to 19 ◦C). The remaining
olumns contain properties such as fracture toughness, pearlite content
nd hardness.

As in may cases with real data, there are many issues with the
aw dataset. As the raw dataset is a compilation of data from various
 o

4

ources, the data quality is not consistent across the rows. For example,
ome cells have exact numbers, whereas others have a range. Moreover,
easurements of properties such as the Charpy energy are very noisy.
hile the raw dataset contains 736 rows of samples, many cells are

mpty in various columns. Consequently, many rows do not completely
ontain information about the samples’ composition, grain size, and
etallurgical properties. For example, there are only 599 samples that
easure YS, 537 UTS measurements, and 296 ELON measurements.
he number of rows that contain information about other metallurgical
roperties is much lower. Moreover, these measurements are spread
cross the data points such that the overlap in rows that measure two
ifferent metallurgical properties is very small. This means that the dif-
erent properties are measured for entirely different alloy compositions,
ith minimal overlap.

.1. Preprocessing the data

The first step of the seamless chain is preprocessing of the data. We
leaned and divided the raw dataset into multiple sets to be used in
ater steps. Firstly, all empty cells in the alloy composition columns
ere assigned a value of zero. As the dataset was collected from various

tudies, empty cells signify that those alloying elements were not a
art of the study, and hence did not exist in the alloy. Secondly, we
erged the columns named ‘‘Nb’’ (niobium) and ‘‘Cb’’ (columbium) as

hey refer to the same alloying element. Finally, we replaced the cells
n the alloy composition columns that were represented as a range of
alues by the average value of the range. At this step, all cells in the
lloy composition columns had numerical values.

We then divided the dataset into multiple sets such that each set
ontained all the alloy composition columns but only one metallurgical
roperty. For this, we only considered rows which documented the
espective metallurgical property. This led to, for example, a YS dataset
ith 599 samples. We repeated the process for UTS and ELON. None
f the columns documenting ITT or the Charpy energy had more than
00 samples. Hence, instead of breaking these columns into multiple
mall sets, we combined the 10 ITT columns and the 6 Charpy energy
olumns into just two columns documenting the temperature and the
orresponding Charpy energy.4 This process led to a Charpy dataset

with 781 samples.5 We used the Pandas Python package to carry out
the aforementioned tasks (Reback et al., 2020).

3.2. Model selection and training

The second step of the seamless chain is training surrrogate models.
To begin the modelling process, we first analysed the dataset to identify
which alloying elements significantly impacted the various metallur-
gical properties. We compared the results of the feature importance
analysis against metallurgical literature to confirm the reliability of the
data. In brief, we conducted the following tests to identify significant
alloying elements for the YS, UTS, Elongation, and Charpy datasets
using the scikit-learn Python package (Pedregosa et al., 2011):

• Principal component analysis (PCA): This method can help us
find ‘‘features’’ (alloying elements in our case) that have the most
variance in the dataset.

• Cross decomposition: We use the PLSCanonical, PLSSVD, PLSRe-
gression, and Canonical Correlation Analysis (CCA) algorithms to
find out which features lead to the most variance in the various
metallurgical properties.

4 This process is known is data ‘‘melting’’ and converts ‘‘wide’’ data (more
olumns, fewer rows) to ‘‘tall’’ data (fewer columns, more rows)

5 Note that, at this step, we have datasets for four mechanical properties
f microalloyed steels already. Therefore, we can create an MOP with four
bjectives, which is more than the three objectives considered in earlier
tudies. However, in later subsections, we will add even more objectives to
ur MOP formulation.
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Fig. 2. Relative ranking of the features calculated for all datasets. A lower rank value (lighter colour in the heatmap) represents higher importance.
• Random forest regression: We calculate feature importance
(FeatImp) and permutation importance (PermImp) using random
forest models trained on the dataset.

• ANOVA tests: We rank various features according to their F-
values.

• Mutual importance (MI): We rank the various features according
to their MI values.

The results of the tests are presented in Fig. 2 as heatmaps. The
-axis in each of the sub-figures denotes the aforementioned tests,
hereas the 𝑦-axis represents the alloying elements (and temperature

values for the Charpy dataset). The colour of the heatmap represents
the relative importance (calculated as a rank) of the alloying element
as measured by each test. Elements with lighter hues achieved a better
rank and are considered more important by the tests.

There are various reasons why a test may consider a certain alloying
element unimportant for a given mechanical property. The alloying ele-
ment may have no effect, or a mixed effect on the mechanical property.
For example, nitrogen can form nitrides with titanium, which can lead
to grain refinement, which leads to better YS. However, in the presence
of aluminium, it can form AlN, which can lead to embrittlement of the
steel, which lowers the YS. Hence, nitrogen can have a mixed effect on
YS, and is ranked low by the tests. The dataset may also have a very
skewed distribution of the values of alloying element concentrations.

In the UTS dataset, only 25 (out of 537) samples contained Zirconium.

5

The effect of such elements may not be adequately represented in the
dataset, which can lead to a low rank. Finally, certain alloying elements
may show a mixed effect on the mechanical properties because of noise
in the dataset.

Based on these tests, we removed unimportant or noisy columns
from the datasets. This can increase the overlap in the ranges of alloying
element compositions for which the various properties are measured
and lead to better modelling and optimization results. We discuss this
further in Section 3.4.

We trained surrogate models for YS, UTS, ELON, and Charpy en-
ergy based on their respective datasets using many surrogate mod-
elling algorithms and compared their training accuracy using the 𝑅2

value. We considered the following surrogate modelling algorithms:
neural networks (Gardner and Dorling, 1998), support vector ma-
chines (Steinwart and Christmann, 2008), Gaussian process regres-
sion (Matheron, 1963; Emmerich, 2005), and various ensemble mod-
elling techniques. These surrogate modelling algorithms have been used
extensively and successfully in data-driven multiobjective optimiza-
tion (Jin et al., 2021). We conducted K-fold cross-validation to choose
the best performing surrogate modelling technique for each metallurgi-
cal property. Details of the test, along with a Python implementation,
can be found in the DESDEO framework.

The results of the test are shown in Table 1. The full names and
details of the surrogate modelling techniques are presented in Ta-

ble 6 in Appendix B. In general, ensemble techniques worked better
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Table 1
The K-fold cross-validation performance (𝑅2 score) of various surrogate modelling techniques on YS, UTS, Elongation, and Charpy datasets.

Surrogate modelling
techniques

YS UTS Elongation Charpy energy

Median 𝑅2 Standard
deviation

Median 𝑅2 Standard
deviation

Median 𝑅2 Standard
deviation

Median 𝑅2 Standard
deviation

ExTR 0.746 0.059 0.8380 0.0709 0.673 0.124 0.166 0.129
Ada 0.604 0.0818 0.7403 0.154 0.575 0.126 0.293 0.0724
Bagging 0.716 0.0492 0.8358 0.0839 0.612 0.108 0.275 0.109
GradBoost 0.712 0.0619 0.8437 0.0629 0.666 0.177 0.436 0.0843
XGBoost 0.742 0.0694 0.8440 0.0781 0.58 0.128 0.178 0.117
XGBRF 0.642 0.0571 0.7678 0.0932 0.651 0.136 0.423 0.0765
LightGBM 0.732 0.0511 0.7833 0.0587 0.642 0.141 0.305 0.103
RandomForest 0.726 0.037 0.8307 0.0679 0.64 0.12 0.317 0.0994
Kriging −204 1920 −85.18 2030 −509 835 −6.5 3.6
SVM1 −0.0253 0.0435 −0.03087 0.0352 0.172 0.0707 −0.0803 0.11
SVM2 −0.232 0.14 −0.3843 0.143 0.0344 0.134 −0.0244 0.184
NN −6.79 1.12 −11.35 7.29 −0.452 0.259 −0.0519 0.113
Table 2
Effect of alloying element composition on mechanical properties calculated using ICE plots. The alloying elements with no reported effects were not
considered for the model.
Alloying element Effect on YS Effect on UTS Effect on ELON Effect on Charpy energy

Carbon positive positive negative mixed
Silicon mixed positive negative –
Manganese positive positive mixed positive
Phosphorus negative negative negative negative
Sulphur mixed negative negative negative
Molybdenum positive positive negative positive
Nickel positive positive negative mixed
Aluminium negative negative positive positive
Nitrogen – – mixed negative
Niobium positive positive positive positive
Vanadium positive positive negative negative
Boron – – mixed –
Titanium positive positive negative mixed
Chromium positive positive negative negative
Cerium positive positive – –
Copper negative positive negative –
Zirconium negative negative mixed –
than other surrogate modelling techniques tested. The extra trees re-
gression (Geurts et al., 2006), gradient boost regression (Friedman)
and random forest regression (Breiman, 2001) (from Python package
scikit-learn), XGBoost (Chen and Guestrin, 2016) (from Python
package xgboost, and LightGBM (Ke et al., 2017) (from Python pack-
age lightgbm) performed the best. It should be noted that we use the
default hyperparameter settings, as provided in their respective Python
packages, for training the surrogate models. As the Charpy dataset was
much noisier than the other datasets, the surrogate models for Charpy
energy performed much worse. The model with the highest median 𝑅2

value was chosen for each mechanical property, as highlighted in bold
in Table 1.

3.3. Model validation

In the absence of the ability to create and test new alloys, we can
validate the models by comparing the effect of changing the alloying
element compositions on the models’ responses. We can do so using
individual conditional expectation (ICE) plots (Goldstein et al., 2015).
They plot the changes in the output of a surrogate model based on
changes in one of the input variables, which are the alloying element
concentrations in our problem. The effect of alloying elements on the
mechanical properties is presented in Table 2.

In the table, we divide the effect of changing alloying element
concentrations into four categories. A positive effect means that the al-
loying element benefits the property modelled by the surrogate model,
whereas a negative effect implies a negative correlation. A mixed effect
implies that the alloying element has a complex relationship with the
modelled property. It can have a beneficial or a detrimental effect
based on other criteria, for example, the concentration of other alloying
6

elements. In contrast, a nil effect (signified with ‘‘-’’) means that the
alloying element has no effect on the surrogate model, or its effect
could not be detected. We present a complete discussion of the effect
of all alloying elements in Appendix A. The discussion is based on
an extensive review (Abbaschian and Reed-Hill, 2009; Bhadeshia and
Hansraj, 2019; Bhadeshia and Honeycombe, 2017; Gladman, 1997; Bae
et al., 2002; Chen et al., 2004; Li et al., 2001; Rozhkova et al., 1981;
Mesquita and Kestenbach, 2011; Erhart and Grabke, 1981; Vervynckt
et al., 2012; Kim et al., 2001; Norström and Vingsbo, 1979; DeArdo,
2003; Morrison, 2009; Yan et al., 2006; Wilson and Gladman, 1988;
Uggowitzer et al., 1996; Baker, 2009; Ghosh et al., 2014; Isheim
et al., 2006; Ye et al., 2012; Adabavazeh et al., 2017; Guo et al.,
2008) covering the effects of alloying elements on strengths (YS and
UTS), ductility (ELON), and impact toughness (Charpy impact energy
absorption at different test temperatures) in a variety of low-carbon
steels used for structural, linepipe, automotive, naval, and pressure
vessel applications.

The DMs concluded that the metallurgical theory and literature back
a majority of ICE plot results. The models can be deemed valid and
be used to study steels’ mechanical behaviour. We can see in Table 2
that many elements have conflicting effects on YS, UTS, Elongation,
and Charpy energy. This is ultimately the source of trade-offs in MOPs
that consider such objectives.

3.4. Problem formulation

Based on the consideration described in the previous subsection,
the selected surrogate models (ExTR for YS and ELON, XGBoost for
UTS, and GradBoost for Charpy energy), can predict the values of YS,
UTS, ELON, and Charpy energy value of vanadium microalloyed steels
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Table 3
The upper and lower bound for the concentrations (in percentage weight) of the alloying elements and their cost as used in (MOP-I) and MOP-II.
Alloying element Lower bound

(MOP-I)
Upper bound
(MOP-I)

Lower bound
(MOP-II)

Upper bound
(MOP-II)

Cost (USD
per Kg)

Carbon 0.009 0.34 0.006 0.4 0
Silicon 0.01 0.55 0 0.6 0.122
Manganese 0.28 1.63 0.28 1.63 1.7
Phosphorus 0 0.035 0 0.035 1.82
Sulphur 0 0.035 0 0.042 2.69
Molybdenum 0 0.53 0 1.0 0.0926
Nickel 0 3.12 0 3.12 40.1
Aluminium 0 0.06 0 0.06 13.9
Nitrogen 0 0.024 0 0.024 1.79
Niobium 0 0.086 0 0.45 0.140
Vanadium 0 0.2 0 0.2 72
Boron 0 0.001 0 0.001 3.68
Titanium 0 0.18 0 0.31 11.5
Chromium 0 1.24 0 1.5 9.4
Cerium 0 0.015 0 0.015 4.6
Copper 0 0.312 0 0.312 6
Zirconium 0 0.008 0 0.008 237
f
l
b
t
b
c
u

as functions of their compositions (and additionally the temperature
for the Charpy energy). Thus, the metallurgical properties form the
objectives of an MOP to be optimized with the alloy composition as the
decision variables. Besides the surrogate models, two more objectives
were added to the problem formulation: carbon equivalent value and
the cost of materials. These objectives can be numerically calculated
as functions of the steel composition. Eq. (2) is used to calculate the
carbon equivalent value. The cost of materials is calculated as a linear
combination of the alloy composition values weighted by the cost of
the elemental components as stated in Table 3.

We formally define the MOP (MOP-I) as:

maximize 𝚈𝚂(𝐜𝐨𝐦𝐩)
maximize 𝚄𝚃𝚂(𝐜𝐨𝐦𝐩)
maximize 𝙴𝙻𝙾𝙽(𝐜𝐨𝐦𝐩)
maximize 𝙲𝚑𝚊𝚛𝚙𝚢(𝐜𝐨𝐦𝐩, 𝑡𝑒𝑚𝑝)
minimize 𝐶𝑒𝑞(𝐜𝐨𝐦𝐩)
minimize 𝐶𝑜𝑠𝑡(𝐜𝐨𝐦𝐩)
subject to 𝐋𝐁 ≤ 𝐜𝐨𝐦𝐩 ≤ 𝐔𝐁,

(MOP-I)

where YS, UTS, ELON, and Charpy are the surrogate models for YS,
UTS, ELON, and the Charpy energy, respectively. The decision variable
𝐜𝐨𝐦𝐩 is the vector of the concentration of 17 alloying elements in the
steel bounded by lower and upper bounds 𝐋𝐁 and 𝐔𝐁. The function 𝐶𝑒𝑞
refers to the carbon equivalent value, and the 𝐶𝑜𝑠𝑡 function refers to the
cost of materials. The temperature 𝑡𝑒𝑚𝑝 input for the 𝙲𝚑𝚊𝚛𝚙𝚢 surrogate
model is kept constant at −80 ◦𝐶. The bounds 𝐋𝐁 and 𝐔𝐁 are calculated
as the bounds of the intersection of the datasets used for all four
surrogate models and the values are given in Table 3. Expanding this
range makes the search space larger, which increases the likelihood of
finding suitable alloy compositions. This is why removing unimportant
or noisy columns was a crucial step in surrogate modelling, as described
in Section 3.2.

We create a simpler version of (MOP-I) (named MOP-II) by re-
moving the Charpy energy objective from (MOP-I). We consider this
version since, as mentioned, the Charpy surrogate model had a worse
accuracy than the other surrogate models. Removing this objective also
led to an expansion of the bounds of the decision variables (calculated
as the bounds of the intersection of the remaining datasets). The upper
and lower bound values for the various alloying elements can be seen
in Table 3.

4. Optimization and decision making

The third and fourth steps of the seamless chain are multiobjective
optimization and decision making. The open-source software frame-
work DESDEO (Misitano et al., 2021) provides a variety of interactive

and some non-interactive methods to solve multiobjective optimization U

7

problems. We begin by solving the two MOPs formulated in the pre-
vious section with two non-interactive evolutionary algorithms: RVEA
and NSGA-III, to generate an approximate representation of Pareto
optimal solutions. These method have been reported to work well with
MOPs with more than four objectives. The details of the optimization
and the results are discussed in Section 4.1. We conducted optimization
using non-interactive MOEAs and presented visualizations of the results
to the DMs to help them form their initial preferences.

In Section 4.2, we outline the details of the interactive MOEA called
MultiDM/IOPIS, a method developed to solve the MOP interactively
with more than one DM. We then describe the interactive optimization
process itself and the results obtained in Section 4.3.

4.1. Non-interactive optimization

We ran the RVEA and NSGA-III algorithms for 150 generations each
to solve MOP-I and MOP-II. There was no improvement in the objective
values attained by the solutions after around 120 generations. The
other parameters of the algorithms were otherwise unchanged from
the values suggested in original publications which proposed RVEA and
NSGA-III. We combined the final solutions from both RVEA and NSGA-
III and removed the ones where some objective function value was
worse and other values not better than in some other solution. Figs. 3
and 4 show the remaining solutions for MOP-I and MOP-II, respectively,
in parallel coordinates plots. Interactive versions of these plots can be
seen at https://desdeo.it.jyu.fi.

The two methods found 1055 solutions for MOP-I and 1599 solu-
tions for MOP-II. The ideal, i.e., best possible, values for the objectives
of MOP-I were (726 MPa, 1577 MPa, 34%, 103 J, 0.087, 43 USD per
kg). The ideal values for the objectives of MOP-II were (752 MPa, 1593
MPa, 34%, 0.055, 42.9 USD per kg). The methods were able to find
slightly better solutions for MOP-II than for MOP-I. This may be because
optimization becomes exponentially more difficult with an increasing
number of objectives. As the parameters of the methods were the same
for solving MOP-I and MOP-II, the results were slightly worse in the
version with one more objective.

Despite the differing performance, certain similarities can be visu-
ally observed in the solutions of MOP-I and MOP-II. For example, in
both cases, there is a cluster of solutions with very high UTS values,
ollowed by a discontinuity, and then a different cluster of medium and
ow UTS values. There are also three clusters in the 𝐶𝑜𝑠𝑡 objective. In
oth problem formulations, 𝐶𝑜𝑠𝑡 did not have significant trade-offs with
he ELON objective. The solutions represented high values for ELON for
oth low 𝐶𝑜𝑠𝑡 and high 𝐶𝑜𝑠𝑡 alloys. However, 𝐶𝑜𝑠𝑡 was very strongly
orrelated with UTS. Low 𝐶𝑜𝑠𝑡 alloys could only achieve UTS values of
p to 1200 MPa. Only the highest 𝐶𝑜𝑠𝑡 alloys could achieve the best

TS values. Increasing 𝐶𝑜𝑠𝑡 also generally increased the YS values.

https://desdeo.it.jyu.fi
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Fig. 3. Solutions of MOP-I presented as a parallel coordinates plot. The solution traces are coloured based on the Carbon equivalent value.
Fig. 4. Solutions of MOP-II presented as a parallel coordinates plot. The solution traces are coloured based on the Carbon equivalent value.
owever, the low 𝐶𝑜𝑠𝑡 alloys could still achieve the best YS values.
mong the solutions of MOP-I specifically, the Charpy objective was
eakly conflicting with all other objectives.

We compared the solutions of MOP-I and MOP-II against structural
nd pipeline steel grades. We enumerate the solutions that match
arious steel grades in Table 4. The MOP-II formulation resulted in
any more feasible alloy compositions for structural steels than the
8

MOP-I formulation. This is because, as mentioned earlier, MOP-II is
easier to optimize than MOP-I. However, for linepipe steels, the MOP-
I formulation discovered alloy compositions to satisfy a more diverse
range of grades than MOP-II. The inclusion of the Charpy energy
objective in MOP-I allowed a more diverse search space. Hence, the
formulation was able to satisfy more grades. Neither formulation was
able to discover solutions that matched the naval steel grades. This
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Table 4
Number of solutions of MOP-I and MOP-II that match structural (BS EN), linepipe (API),
and naval (MIL) steel standards.

Standard Grade Solutions
(MOP-I)

Solutions
(MOP-II)

BS EN-10025-4 S275ML 2 47
BS EN-10025-4 S355ML 2 47
BS EN-10025-4 S420ML 5 45
BS EN-10025-4 S460ML 5 17
BS EN-10149-2 S315MC 7 132
BS EN-10149-2 S355MC 8 149
BS EN-10149-2 S420MC 9 226
BS EN-10149-2 S460MC 7 182
BS EN-10149-2 S500MC 7 175
BS EN-10149-2 S550MC 3 133
BS EN-10149-2 S600MC 2 84
BS EN-10149-2 S650MC 1 58
BS EN-10149-2 S700MC 0 22
BS EN-10025-6 S460QL1 5 39
BS EN-10025-6 S500QL1 1 28
BS EN-10025-6 S550QL1 1 12
BS EN-10025-6 S620QL1 0 1
API - 5L - 2018 X42M 1 2
API - 5L - 2018 X46M 1 2
API - 5L - 2018 X52M 1 2
API - 5L - 2018 X56M 1 1
API - 5L - 2018 X60M 1 0
API - 5L - 2018 X65M 1 0
API - 5L - 2018 X70M 1 0
API - 5L - 2018 X80M 1 0
MIL-S-24645A(1984) HSLA-80 0 0
MIL-S-24645A(1989) HSLA-100 0 0

signifies that RVEA and NSGA-III were not able to find solutions in all
regions of the Pareto front.

4.2. MultiDM/IOPIS

As mentioned earlier, optimization with MOEAs to approximate
the entire Pareto front becomes increasingly more challenging with
more objectives. Interactive MOEAs resolve this issue by using the
preferences of a DM to narrow down the search to solutions that are of
interest to the DM, thus, focusing computational resources in a smaller
region. In this study, there were two domain experts who acted as DMs,
whereas one of the authors acted as an analyst to guide them through
the interactive decision making process. As the number of objectives is
not an issue for the interactive MOEAs, only MOP-I was solved.

IOPIS was originally proposed for a single DM. We developed
and implemented a new variant of the IOPIS algorithm (Saini et al.,
2020), called MultiDM/IOPIS, to support collaborative interaction with
multiple DMs simultaneously, that is, group decision making. The
new algorithm provides this support while maintaining the beneficial
properties of the original IOPIS algorithm, i.e., the guarantees of op-
timality, preferability, and searchability. The original IOPIS algorithm
uses multiple scalarization functions, which take the same preference
information, to convert an MOP to a new MOP with a lower number
of objectives. The new MOP, with the preference information as a
fundamental building block, allows non-interactive MOEAs such as
RVEA and NSGA-III to focus on the region of interest of the DM and,
thus, converts these non-interactive methods as interactive ones.

MultiDM/IOPIS reverses this concept by using copies of the same
scalarization function, taking different preferences as input. The mul-
tiple preferences can come, for example, from multiple DMs, as in
our case. MultiDM/IOPIS, thus, creates a new MOP with the same
number of objectives as the number of DMs, regardless of the number
of objectives in the original MOP. In our case, the number of DMs (two)
is much smaller than the number of objectives (six), making the new
MOP formed by MultiDM/IOPIS much easier to solve.

In brief, the interactive optimization process with multiple DMs
applying MultiDM/IOPIS involves the following steps: (1) The DMs
 t
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provide individually their own reference points reflecting their desired
values for the objectives. (2) The new MOP is formed, where the ob-
jective functions are scalarization functions containing the preferences
of one of the DMs. (3) The MOP is solved with an MOEA to get a set of
solutions to be shown to the DMs. (4) The DMs analyze the solutions
to see how their own and the preferences of the others are reflected. If
a satisfactory solution is found, stop. Otherwise, go to (1).

Let us elaborate the behaviour of MultiDM/IOPIS in the case of two
DMs (for simplicity). It has the following modes of operation:

1. Case 1. The DMs provide extremely different preferences: The
MOEA converges towards the two solutions that best satisfy the
two preferences individually, as well as many solutions that
present a compromise between the preferences of the DMs. The
inclusion of compromise solutions provides necessary informa-
tion to the DMs to collaborate on a compromise.

2. Case 2. One DM explores the objective space by changing pref-
erences but the other DM stays anchored: The MOEA converges
further and provides better solutions near the region of interest
of the DM that did not change preferences. At the same time,
the MOEA discovers new solutions to reflect the new preferences
given by the first DM. The MOEA also provides compromise
solutions between the two regions of interest. This mode al-
lows for quick but controlled exploration of potential solutions:
discovery of new solutions in new regions of interest and the
corresponding trade-offs with the anchored preferences. Thus,
even the anchored DM can find new, potentially favourable
solutions.

3. Case 3. The DMs provide preferences close to each other: The
DMs are expected to arrive at a favourable compromise dur-
ing the interactive optimization process. The MOEA returns
solutions in a narrower region as the preferences draw closer,
providing many solutions with minor variations in the objective
values. This variety allows the DMs to choose a finely-tuned
solution for their application.

To solve our problem, we applied MultiDM/IOPIS with the scalar-
ization function from the STOM method (Nakayama and Sawaragi,
1984) in our implementation of MultiDM/IOPIS6 (it was already avail-
able in DESDEO) and NSGA-III to solve the resulting biobjective op-
timization problem. NSGA-III generally performs better than RVEA in
MOPs with a lower number of objectives (Li et al., 2018). The STOM
scalarization function takes a DM’s preferences as a reference point: a
vector of objective values (for all objectives) that the DM aspires to
achieve. In the interactive optimization process, the DMs can change
the reference points at any time, resulting in MultiDM/IOPIS creating a
new MOP which reflects the new preferences. However, the population
from the MOEA continues its evolution from the previous MOP. Thus,
no progress on optimization is lost.

We set the population size of NSGA-III to be 50. While this is
an inadequate size for a problem with six objectives, we found that
it is sufficient for the modified MOP generated by MultiDM/IOPIS.
Moreover, we only ran the MOEA for 30 generations between itera-
tions, i.e., asking the DMs for preferences and providing near-Pareto
optimal solutions to analyze and update their preferences. We arrived at
these parameter settings by first running the algorithm with the default
population size and number of generations (as suggested in Deb and
Jain (2014)), and then lowering the parameter values as long as there
was no change in the quality of the solutions found by the algorithm. In
our experiments, the small number of generations and population size
led to a near-instantaneous return of solutions and high computational

6 The DESDEO framework was designed with modularity and ease-of-use
s core concepts. As such, our implementation of MultiDM/IOPIS in DESDEO
an be used in exactly the same way as any other MOEA implemented in
ESDEO. We provide examples of such usage in Misitano et al. (2021) and in

he documentation of the framework.
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Fig. 5. Results of interactive optimization using MultiDM/IOPIS. The results from three iterations are presented in green (iteration 1), blue (iteration 2), and grey (final iteration).
Table 5
Preferences given by the two DMs during interactive optimization using MultiDM/IOPIS
in the form of reference points. The values of components of each reference point
represents the preferences for objectives in the order (YS, UTS, ELON, Charpy, 𝐶𝑒𝑞 ,
𝑜𝑠𝑡).

Preferences in the first iteration

DM 1: (460, 550, 17, 27, 0.47, 50)
Similar to structural grade S460QL1
DM 2: (690, 770, 14, 27, 0.65, 80)
Similar to structural grade S690QL1

Preferences in the second iteration

DM 1: (552, 600, 20, 81, 0.6, 50)
Similar to naval grade HSLA-80
DM 2: (690, 770, 14, 27, 0.65, 80)
Similar to structural grade S690QL1

Preferences in the third iteration

DM 1: (552, 600, 20, 81, 0.6, 50)
Similar to naval grade HSLA-80
DM 2: (690, 770, 18, 81, 1, 80)
Similar to naval grade HSLA-100

efficiency. The other parameters (such as the crossover and mutation
operators) of NSGA-III were otherwise unchanged from the settings
suggested in the original publication.

4.3. Interactive optimization process

We started the process of interactive optimization by first showing
the solutions of the non-interactive optimization methods to the DMs
(Figs. 3 and 4) in interactive plots that allowed brushing and filtering
of solutions. This process enabled them to explore the approximated
Pareto optimal solutions to learn about the trade-offs and form their
initial preferences. The analyst introduced MultiDM/IOPIS to the DMs
by describing how they can steer the interactive optimization process
with their preference information (and the three modes of operation).

We show the first reference points given by the two DMs in Table 5.
The first DM set the reference point to target solutions to match the
structural steel grade S460QL1 and the second DM did the same for
S690QL1. During non-interactive optimization, the MOP-I formulation
resulted in only five solutions to match the S460QL1 grade. The MOP-II
formulation resulted in 39 solutions that matched that grade. Neither
formulation had resulted in any solutions for the S690QL1 grade, as it
is a stricter grade.

The analyst visualized the solutions generated based on the two
reference points to the DMs in a parallel coordinate plot, see green
lines in Fig. 5. We combine the solutions of all iterations in Fig. 5 for
the sake of brevity. The solutions of the first iteration vastly exceeded
the first DM’s preferences. The solutions closely matched the second
DM’s much stricter preferences, while still giving much better values
10
for the Charpy objective compared to the reference point. No solution
discovered during the non-interactive optimization could match the
solutions found in the first iteration of the interactive optimization in
all six objectives.

For the second iteration, the presence of solutions with very good
Charpy values led to the first DM changing preferences to a much
stricter naval steel grade: HSLA-80. The second DM chose not to change
preferences to preserve the newly discovered solutions for further con-
sideration. The exact values of the two reference points are presented
in the second row of Table 5.

We visualize the solutions of the second iteration in Fig. 5 in
blue. The most apparent differences between the solutions of the two
iterations were in the ELON and Charpy objective values. The Charpy
values were much better for solutions of the second iteration, which
came at the cost of worse ELON values (although still better than the
given preferences). This change was because of the much higher value
for the Charpy objective in the reference point given by the first
DM. The equivalent carbon content 𝐶𝑒𝑞 for the solutions of the second
iteration was also higher but still well within the grade specifications.
There was a small number of solutions that satisfy the preferences given
by the first DM (higher Charpy and ELON), and a small number that
met the preferences given by the second DM (higher YS and UTS).
A majority of solutions represented the trade-offs between the two
preferences.

Based on the results of the second iteration, the second DM decided
to change the preferences to a much stricter naval steel grade HSLA-
100. The reference points for the third iteration (in the third row of
Table 5) were very close to each other: the two DMs were coming into
agreement regarding their preferences.

The solutions of the third iteration, shown in Fig. 5 in grey, had
a narrower spread compared to the previous iterations. A significant
trade-off this time was present between the UTS and ELON objectives.
This trade-off originated from the differences in the two reference
points. Even though the second DM allowed for a much higher 𝐶𝑜𝑠𝑡
value of 80 USD/kg, MultiDM/IOPIS achieved satisfactory values for
all other objectives at close to half of the 𝐶𝑜𝑠𝑡 value. The DMs were
satisfied with the solutions obtained and decided to end the interactive
optimization process. The solutions of the third iteration were very
similar and the solution with the objective values (700, 846, 24.2, 87,
0.470, 47) was chosen. This solution is better than the preferences
provided by either DM as seen in Table 5, which is why it was chosen.
The complete set of all solutions found by MultiDM/IOPIS in all three
iterations can be found via the DESDEO framework.
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5. Discussion

MOPs and their solution processes are often presented straightfor-
wardly in the literature: problem formulation (often given without
details of modelling), followed by optimization, visualization and dis-
cussion of results. It provides a straightforward approach to give an
account of the problem and the steps taken to solve it. However, it
hides many complexities of the challenges faced in solving real MOPs,
particularly data-driven MOPs. In Sections 3 and 4, we provided a de-
tailed account of all the steps taken to formulate and solve MOPs in the
case considered. However, we did not discuss why some of those steps
were necessary. This is because, for example, we took the measures
taken during the first steps of solving the MOP (i.e., data preprocessing)
to solve issues that arose during the last steps (i.e., optimization). We
discovered many fundamental issues while solving the MOP, which
required us to rethink our approach, apply fixes to earlier steps, and
restart the solution process. An explanation of such issues and their
resolutions requires the knowledge of the entire solution process.

After Sections 3 and 4, having discussed the entire solution process,
we can now elaborate on the challenges we faced and justify the choices
we made to solve them. In this section, we also talk about approaches
that lead to dead-ends and, therefore, did not warrant a mention in the
previous sections.

The first issue we faced was converting the data into a usable
format. The naive approach of simply training surrogate models on
the raw datasets (mostly empty cells) would lead to issues related to
extrapolation (models giving bad predictions in areas outside the bound
of a given objective but within the bound of the dataset). Sometimes,
the models trained in such a manner also led to run-time errors. Thus,
cleaning and preprocessing the data were needed. Dividing the dataset
into individual datasets for each objective also allowed us to calculate
each objective’s domains (ranges of decision variable values). This
information helped us define the constraints of the MOP during the
later steps.

The dataset involving the Charpy energy and ITT experiments re-
quired additional treatment as it required combining multiple columns
(Charpy energy measured at various temperatures/ITT measured at
various energy levels) into just two columns (temperature and Charpy
energy). No individual column in the original dataset contained enough
information for proper training of corresponding surrogate models.
Therefore, initially, we chose not to include Charpy energy in this
study. However, the MOEAs could not find solutions to match steel
grades requiring high performance at very cold temperatures because
of the lack of Charpy energy in our initial problem formulations.
The Charpy dataset we created enabled us to train reasonably well-
performing models, which solved the issue.

Creating the MOP required us to find the intersection of the domains
of all the objectives. We discovered in our initial calculations that the
intersection was a null set. Thus, the models trained on the individual
datasets would constantly be extrapolating if used together. This issue
was mildly resolved by removing some extraneous columns that were
almost entirely empty. This demanded further additions to the data
preprocessing steps. However, the intersection was still very restricting.
Expanding on the previous idea, we posited that we could remove
even more columns to increase the intersection area. Therefore, it was
essential to identify which decision variables had little or no impact on
the objective values. We discuss the tests conducted for this task at the
beginning of Section 3.2.

The choice and verification of models are crucial in data-driven
optimization and help build trust in the solutions generated by the
methods. Ideally, such models should be verified by confirming their
predictions from experiments (creating and testing alloys, in our case).
However, those resources were not available to us during this study.
Therefore, we conducted rigorous testing of many surrogate mod-
elling techniques to determine the best choice for each objective. We
also confirmed that the predictions of the models matched current
11
metallurgical literature. For modelling Charpy energy specifically, we
tried some novel approaches of combining metallurgical knowledge
(such as approximate functions which predict Charpy energy based on
temperature) and surrogate modelling techniques. However, because
the dataset contained many different kinds of steels, this approach did
not work as well as simply using the surrogate model with the Charpy
dataset.

During interactive optimization, we encountered the issue of sup-
porting multiple DMs. We could not find implementations of interactive
optimization methods that could solve our MOP while incorporating
the preferences of multiple DMs. Therefore, we created a new method
using DESDEO, based on the IOPIS algorithm. We elaborated on Mul-
tiDM/IOPIS in Section 4.2, which uses reference points as the mode
of receiving preferences. However, we had created multiple variants
of IOPIS which use different forms of preferences. The DMs in question
felt most comfortable giving preferences in the form of reference points,
so we only discuss MultiDM/IOPIS in this paper. The creation of these
new methods was greatly quickened by the modularity of the DESDEO
framework, which enabled us to reuse the components already present
in the framework instead of implementing everything from scratch.

The ease of use of the DESDEO framework also allowed the analyst
to quickly switch between and demonstrate different MOP formulations
to the DMs. This, along with being actively involved in the interactive
optimization process, inspired the DMs to suggest the addition of the
carbon equivalent value as one of the objectives. Thus, MultiDM/IOPIS
and DESDEO led to the formulation of a better MOP. Note that the
DESDEO framework provides many other interactive methods, includ-
ing ones that are not MOEAs (Miettinen and Mäkelä, 2006; Ruiz et al.,
2015). In MOPs with a single DM, any of these interactive methods
(or, in fact, any interactive method from any other framework) can be
applied.

To sum up, we faced many interesting challenges while solving
(or even formulating) our MOP. We made additions to the DESDEO
framework to resolve the challenges successfully. We implemented the
novel MultiDM/IOPIS method that helped us arrive at a better problem
formulation. It also provided better results than RVEA and NSGA-
III while being computationally much more efficient, requiring fewer
generations with a smaller population size.

As we have established, the linear schematic of a seamless chain
presented in Fig. 1 does not capture the complexity of solving real-
life data-driven problems entirely. We present a new depiction that
reflects our experience of solving the MOPs presented in this study in
Fig. 6. The decisions made to preprocess the data, model the objectives,
formulate the MOP, and supporting one or multiple DMs are intercon-
nected and interdependent. The data limits which objectives can be
considered for the MOP. The modelling and MOP formulation steps can
reveal further shortcomings and issues with the data, forcing the analyst
to change the preprocessing strategy. The expertise of the DMs is
crucial not just in decision making, but also in understanding the data,
validating the surrogate models, and formulating meaningful MOPs. An
analyst’s role is to channel the expertise of DMs to successfully tackle
the issues that arise during all steps of the seamless chain process.

To resolve such issues, an analyst needs to use a variety of tools,
many of which we have described in this study. While other real-life
data-driven problems may not have the same challenges we faced, we
document the entire process as a general guideline of the seamless
chain method to solve MOPs. We make all methods, procedures, imple-
mentations, data, and visualizations developed or created during this
study openly available via the DESDEO framework (Misitano et al.,
2021).

6. Conclusions

We considered many challenges in formulating and solving real-
life data-driven multiobjective optimization problems. The challenges
covered all steps of a seamless chain from data to decision-making
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Fig. 6. A realistic depiction of the seamless chain.

hat we introduced. The concrete steps related to microalloyed steels
emonstrated the reasoning. We processed the raw dataset significantly
o enable using it. We identified the essential decision variables, and
rained and tested the best surrogate models to emulate the objectives
erived from the data. We validated those models by comparing their
esponse to changing decision variables to known metallurgical litera-
ure. With the surrogates as objectives, we formulated multiobjective
ptimization problems. We introduced interactive optimization to two
omain experts who acted as DMs, which inspired them to create better
roblem formulations. We developed a novel interactive evolutionary
ethod called MultiDM/IOPIS to simultaneously support the two DMs

who had different preferences) in interactive optimization. The so-
utions obtained were very satisfactory to the DMs and the solution
rocess had a low computation cost.

We utilized many popular open-source tools in the process of formu-
ating and solving our problems. The DESDEO framework was instru-
ental as it enabled us to experiment quickly with different versions

f the problems. It also allowed us to implement the MultiDM/IOPIS
ethod quickly by utilizing its modular implementations of scalariza-

ion functions (implemented via the GLIDE-II framework (Ruiz et al.,
012)) and MOEAs. We discussed the steps taken to solve the MOPs in
reat detail and established a methodology and guidelines for solving
eal-life data-driven MOPs. We provide all tools, data, and methods
reated or used openly via the DESDEO framework, enabling their
sage by others.

MultiDM/IOPIS enables supporting multiple DMs simultaneously to
olve multiobjective optimization problems. It worked very well in our
tudy and found solutions that non-interactive evolutionary algorithms
VEA and NSGA-III could not find. While our study had only two
Ms, MultiDM/IOPIS can support any number of DMs (by having as
any scalarization functions in its formulation). The properties of such

ormulations and the application of MultiDM/IOPIS with more than
wo DMs need further studies. The algorithm is also limited by a
ack of an intuitive UI, making providing preferences and visualizing
esults challenging for DMs. Designing UIs to facilitate group decision
aking is an important future research direction. Another interesting

rea of study is the application of MultiDM/IOPIS in online data-driven
 l

12
MOPs, i.e., data-driven MOPs with the option to conduct further func-
tion evaluations to increase the accuracy of the surrogates. Moreover,
solving such problems requires tackling challenges specific to online
data-driven problems, and a guideline to do so will be of great use.
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Appendix A. Effect of concentrations of alloying elements on met-
allurgical properties of microalloyed steels

Carbon: Being the primary interstitial solute in steel, C atoms
trongly interact with both edge- and screw-dislocations and provide
ignificant solid solution strengthening. Besides, C increases harden-
bility and promotes the formation of harder phase constituents like
earlite, bainite and martensite which increases the strength. In ad-
ition, iron carbides and alloy carbides contribute to precipitation
trengthening. An increase in strength by the increase in C content in
eneral hampers ductility, toughness, formability and even weldability.
he coarse and brittle carbide particles can act as the crack initiators
or void nucleation sites) and thus, affect impact toughness. On the
ther hand, fine carbide precipitates pin down the grain boundaries and
estrict grain growth. The beneficial effect of microalloy carbide pre-
ipitates (say, NbC) on the retardation of austenite recrystallization and
he consequent ferrite grain refinement in thermomechanical processed
icroalloyed steels is well known. Grain refinement is beneficial for

mpact toughness. As a result, C shows a positive effect on strength, a
egative effect on ductility and a mixed response on impact toughness.
Silicon: As a substitutional solute, Si provides solid solution

trengthening and shows a positive effect on strength (particularly UTS)
nd a negative effect on ductility. Si is preferred in steels containing low
evels of C and other strengthening elements like Mn. That could result
n a mixed response of Si on YS. Si decreases the cohesive strength
f the atomic planes helping cleavage crack propagation and renders
teel brittle, affecting impact toughness. In contrast, Si restricts the
ormation of iron-carbides (detrimental to roughness) and contributes
o carbide free bainitic microstructures. As a result, Si does not show a
lear trend on Charpy energy.
Manganese: Being present at a considerable amount (0.5 to 2.0

t%), Mn is a strong solid solution strengthener in steels, which can
aturally affect ductility. Mn is maintained at a higher side typically in
ow-C steels, having high ductility and impact toughness. Besides, Mn
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stabilizes retained austenite which contributes to the TRIP (transforma-
tion induced plasticity) effect. Mn also suppresses pearlite formation
and coarsen the interlamellar spacing in pearlite. Although MnS inclu-
sion is detrimental to toughness, it is not as harmful as iron-sulfide.
These combined factors resulted in a mixed response of Mn on ductility
and a positive influence on impact toughness.

Phosphorous: Segregation of P at the grain boundaries reduces
the boundaries’ cohesive strength, and the associated embrittlement
seriously affects ductility and impact toughness. Although P is a solid
solution strengthener, its content is restricted in commercial grades of
steel. It is only allowed when the levels of C and the other alloying
elements are very low (like P strengthened interstitial free steel). That
is possibly the reason behind P’s negative effect on strength, as detected
here.

Sulfur: S has a strong negative effect on steel properties, particu-
larly on ductility and toughness. Coarse and elongated MnS inclusions
initiate large voids and fissures (promoting ductile fracture), cause
anisotropy in properties, and even act as the cleavage crack initiators.
Segregation of S at grain boundaries and interdendritic regions and the
formation of iron-sulfides can be even more detrimental for properties.
Being softer than the steel matrix, MnS can reduce the strength when
present at a high fraction. However, occasionally fine MnS particles
can offer grain refinement by (i) pinning the grain boundaries, and (ii)
VN precipitation on MnS can provide nucleation sites for intergranular
ferrite within austenite grains. Hence, S showed a mixed response on
the YS and a negative influence on other properties.

Molybdenum: Mo provides solid solution strengthening and pre-
cipitation strengthening by forming various precipitates such as Mo2C,
(Ti, Mo)C and (V, Mo)C. Mo also increases hardenability and promotes
bainite transformation in steels. It refines the interlamellar spacing of
pearlite. These aspects can have a beneficial effect on strength but
a detrimental impact on ductility. Besides, Mo significantly retards
temper embrittlement. In modern structural and linepipe grades of
steel (and their weld joints), acicular ferrite microstructure is preferred
to achieve high strength and high toughness. Mo can promote such
microstructure and improve the impact toughness.

Niobium: As a microalloying element in thermomechanically pro-
cessed high-strength low-alloy (HSLA) steels, NbC, NbN, and Nb(C,
N) precipitate contribute significant ferrite-grain refinement as well as
precipitation strengthening. Nb is also a scavenger of C and N from
solution, which can improve ductility. Besides, being a substitutional
solute, Nb offers solid solution strengthening, increases hardenability
and promotes the formation of bainite and acicular ferrite microstruc-
tures. Thus, Nb shows a clear trend, i.e., a positive effect on all the
investigated properties.

Vanadium: As a microalloying element, the primary contribution of
V is precipitation strengthening in steels by the formation of numerous
fine VC and V(C, N) precipitates during austenite to ferritic transfor-
mation. However, strong precipitation strengthening from V negatively
affects ductility and toughness. Although VN particles in austenite can
act as nucleation sites for intragranular ferrite grains, V, in general, is
not a strong grain refiner. Thus, V demonstrates a positive response on
strength but a negative response on ductility and impact toughness.

Titanium: As a microalloying element, the primary contribution of
Ti is to restrict austenite grain growth during soaking, welding, and
even conventional hot-rolling by the formation of stable TiN and Ti(C,
N) precipitates. Such a grain size control can be beneficial for impact
toughness. Similar to Nb, dissolved Ti improves hardenability and
provides solid solution strengthening. Fine-scale precipitation of TiC (at
relatively lower temperatures) can also offer precipitation strengthen-
ing. Recently there has been an emphasis on nanometer-sized (Ti, Mo)C
precipitation strengthened ferritic steels for automotive applications.
Precipitation strengthening can hamper ductility and toughness. Ti and
N contents should be controlled carefully in steels as course and brittle
TiN particles are the potent sites for cleavage crack initiation that can

seriously hamper impact toughness and ductility. Thus, Ti shows a r
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positive effect on strength, a negative effect on ductility, and a mixed
response on impact toughness.

Silicon: As a substitutional solute, Si provides solid solution
strengthening and shows a positive effect on strength (particularly UTS)
and a negative effect on ductility. Si is preferred in steels containing low
levels of C and other strengthening elements like Mn. That could result
in a mixed response of Si on YS. Si decreases the cohesive strength
of the atomic planes helping cleavage crack propagation and renders
steel brittle, affecting impact toughness. In contrast, Si restricts the
formation of iron-carbides (detrimental to roughness) and contributes
to carbide free bainitic microstructures. As a result, Si does not show a
clear trend on Charpy energy.

Manganese: Being present at a considerable amount (0.5 to 2.0
t%), Mn is a strong solid solution strengthener in steels, which can
aturally affect ductility. Mn is maintained at a higher side typically in
ow-C steels, having high ductility and impact toughness. Besides, Mn
tabilizes retained austenite which contributes to the TRIP (transforma-
ion induced plasticity) effect. Mn also suppresses pearlite formation
nd coarsen the interlamellar spacing in pearlite. Although MnS inclu-
ion is detrimental to toughness, it is not as harmful as iron-sulfide.
hese combined factors resulted in a mixed response of Mn on ductility
nd a positive influence on impact toughness.
Phosphorous: Segregation of P at the grain boundaries reduces

he boundaries’ cohesive strength, and the associated embrittlement
eriously affects ductility and impact toughness. Although P is a solid
olution strengthener, its content is restricted in commercial grades of
teel. It is only allowed when the levels of C and the other alloying
lements are very low (like P strengthened interstitial free steel). That
s possibly the reason behind P’s negative effect on strength, as detected
ere.
Sulfur: S has a strong negative effect on steel properties, particu-

arly on ductility and toughness. Coarse and elongated MnS inclusions
nitiate large voids and fissures (promoting ductile fracture), cause
nisotropy in properties, and even act as the cleavage crack initiators.
egregation of S at grain boundaries and interdendritic regions and the
ormation of iron-sulfides can be even more detrimental for properties.
eing softer than the steel matrix, MnS can reduce the strength when
resent at a high fraction. However, occasionally fine MnS particles
an offer grain refinement by (i) pinning the grain boundaries, and (ii)
N precipitation on MnS can provide nucleation sites for intergranular

errite within austenite grains. Hence, S showed a mixed response on
he YS and a negative influence on other properties.
Nickel: Being a solid solution strengthener Ni is expected to im-

rove the strength of steel. Although strengthening can negatively
ffect ductility and toughness, Ni is particularly beneficial in improv-
ng the low-temperature impact toughness, preventing ductile-to-brittle
ransition in ferritic steels. Being an austenite stabilizer, Ni can also en-
ance impact toughness through the TRIP effect of retained austenite.
i may not be as effective in improving room-temperature toughness
s low-temperature toughness. Besides being an expensive alloying
lement, Ni is typically added in special grades of heavily alloyed
igh-strength steels, which inherently have a low ductility and impact
oughness (to restore these properties). Therefore, Ni showed a negative
esponse to ductility and a mixed response to impact toughness.
Aluminium: Al is used for deoxidation and grain refinement in steel

y the formation of Al2O3 and AlN, respectively. Al has a weak effect
n hardenability, and it stabilizes the soft and ductile ferrite phase. The
bility of Al to scavenge N from solution reduces the strengthening
ffect of N, which can improve ductility, toughness, and formability.
he steel also becomes resistant to strain-ageing and the associated
ield point phenomenon as desired in formable automotive grades
f steel. AlN particles restrict grain growth and help achieve a fine
rain size, which is beneficial for impact toughness. In bainitic steels,
l also retards carbide precipitation (iron-carbides are detrimental to

oughness) which stabilizes retained austenite and contributes TRIP
ffect. Hence, Al showed a negative effect on strength but a positive

esponse on ductility and impact toughness.
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Table 6
Details of the surrogate modelling algorithms considered in this study.

Acronym used in
the article

Details

ExTR Ensemble method in Python package
scikit-learn named ExtraTreesRegressor.

Ada Ensemble method in Python package
scikit-learn named AdaBoostRegressor.

Bagging Ensemble method in Python package
scikit-learn named BaggingRegressor.

GradBoost Ensemble method in Python package
scikit-learn named GradientBoostRegressor.

XGBoost Ensemble method in Python package xgboost
named XGBRegressor.

XGBRF Ensemble method in Python package xgboost
named XGBRFRegressor.

LightGBM Ensemble method in Python package lightgbm
named LGBMRegressor.

RandomForest Ensemble method in Python package
scikit-learn named RandomForestRegressor.

Kriging Kriging method in Python package
scikit-learn named
GaussianProcessRegressor.

SVM1 Support vector machine in Python package
scikit-learn named SVR.

SVM2 Linear support vector machine in Python package
scikit-learn named LinearSVR.

NN Neural networks in Python package
scikit-learn named MLPRegressor.

Nitrogen: Although N is a strong solid solution strengthener, it
ignificantly hampers ductility, toughness, and formability when in
olution. Therefore, N in solution is minimized by the scavenging action
f strong nitride forming elements such as Ti, Al, Nb and V. The grain
efinement of microalloy nitride and carbo-nitride precipitates, along
ith the N free matrix, can improve ductility and toughness. Therefore,
does not show any trend on strength, mixed response on ductility,

nd positive influence on impact toughness.
Boron: B is used at a controlled quantity to increase the harden-

ability of special grades of steels having bainite or tempered martensite
microstructures. In this study, B does not show a clear trend with any
of the properties possibly due to the following reasons. (i) B in solution
at only tens of ppm can be effective for enhancing hardenability.
However, higher addition of B can be detrimental due to the formation
of hard and brittle particles like BN, metal-borides and boro-sulfides.
(ii) To prevent BN formation, B is shielded by the addition of stronger
nitride formers such as Ti, Al and Zr, and those elements also influence
the steel’s properties. (iii) Finally, the data available on B containing
steels is limited.

Chromium: Cr enhances hardenability, refines interlamellar spac-
ing of pearlite, and provides solid solution strengthening and precipi-
tation strengthening. Hence, Cr has a positive effect on strength. Coarse
Cr23C6 precipitates, however, can impose a negative effect on ductility
and toughness.

Cerium: Being a rare earth metal, Ce is occasionally added in
steels to control the shape and size of sulfide and oxide inclusions.
Ce in solution and its grain boundary segregation may impart some
strength apart from inclusion refinement, which can benefit toughness.
However, Ce is usually added in high-strength steels with low ductility
and toughness. Ce addition needs to be carefully controlled and a high
Ce level (> 0.03 wt%) can be detrimental. Data availability on Ce
containing steels is also limited. Hence, Ce shows a positive effect on
strength but no clear trend on the other properties.

Copper: Cu has low solubility in ferritic steels. It precipitates out as
metastable BCC which is coherent with the matrix and then transforms
to incoherent FCC, increasing strength. The negative effect of Cu on
14
steels is difficult to explain apart from the fact that being softer than
the matrix, Cu precipitates may soften the steel at the onset of plastic
deformation when present at a high fraction. High addition of Cu can
result in its segregation at grain boundaries and surface regions and
can hamper the ductility, particularly at high temperatures, causing hot
cracking. FCC-Cu precipitates can restrict the ductile-to-brittle transi-
tion at the low test temperature. However, the present study could not
detect its beneficial effect on impact toughness.

Zirconium: Being a rare and expensive alloying element, Zr is
occasionally used in steels. Its affinity for O, S, and N is the primary
reason behind Zr addition: controlling the non-metallic inclusions and
scavenging N from solution (say, to protect B). Zr’s oxides, sulfides,
and nitrides can prevent grain growth at high temperatures. However,
the beneficial effects of Zr could not be identified here possibly due to
limited data availability of Zr steels.

Some of the elements mentioned in Table 2 are added to steels
to improve certain properties beyond the present study’s scope. For
example, Cr, N and Cu are beneficial for corrosion resistance.

Appendix B. Acronyms used in the article

See Table 6.

References

Abbaschian, R., Reed-Hill, R.E., 2009. Physical Metallurgy Principles-SI Version.
Cengage Learning.

Adabavazeh, Z., Hwang, W., Su, Y., 2017. Effect of adding cerium on microstructure
and morphology of Ce-based inclusions formed in low-carbon steel. Sci. Rep. 7 (1),
1–10.

Bae, C., Lee, C., Nam, W., 2002. Effect of carbon content on mechanical properties of
fully pearlitic steels. Mater. Sci. Technol. 18 (11), 1317–1321.

Baker, T., 2009. Processes, microstructure and properties of vanadium microalloyed
steels. Mater. Sci. Technol. 25 (9), 1083–1107.

Bhadeshia, H.K., Hansraj, D., 2019. Bainite in Steels: Theory and Practice. CRC Press.
Bhadeshia, H., Honeycombe, R., 2017. Steels: Microstructure and Properties.

Butterworth-Heinemann.
Branke, J., Deb, K., Miettinen, K., Slowinski, R. (Eds.), 2008. Multiobjective

Optimization: Interative and Evolutionary Approaches. Springer.
Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32.
Chakraborti, N., 2022. Data-Driven Evolutionary Modeling in Materials Technology.

CRC Press.
Chen, T., Guestrin, C., 2016. XGBoost: A scalable tree boosting system. In: Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. pp. 785–794.

Chen, M.-Y., Linkens, D., Bannister, A., 2004. Numerical analysis of factors influencing
charpy impact properties of TMCR structural steels using fuzzy modelling. Mater.
Sci. Technol. 20 (5), 627–633.

Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B., 2016. A reference vector guided
evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput.
20 (5), 773–791.

Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya, K., 2016. A surrogate-assisted
reference vector guided evolutionary algorithm for computationally expensive
many-objective optimization. IEEE Trans. Evol. Comput. 22 (1), 129–142.

Chugh, T., Sindhya, K., Hakanen, J., Miettinen, K., 2019. A survey on handling
computationally expensive multiobjective optimization problems with evolutionary
algorithms. Soft Comput. 23 (9), 3137–3166.

DeArdo, A., 2003. Niobium in modern steels. Int. Mater. Rev. 48 (6), 371–402.
Deb, K., Jain, H., 2014. An evolutionary many-objective optimization algorithm using

reference-point-based nondominated sorting approach, Part I: Solving problems
with box constraints. IEEE Trans. Evol. Comput. 18 (4), 577–601.

Deb, K., Saxena, D., 2006. Searching for Pareto-optimal solutions through di-
mensionality reduction for certain large-dimensional multi-objective optimization
problems. In: Proceedings of the World Congress on Computational Intelligence.
pp. 3352–3360.

Emmerich, M., 2005. Single-and multi-objective evolutionary design optimization
assisted by Gaussian random field metamodels. University of Dortmund.

Erhart, H., Grabke, H.-J., 1981. Equilibrium segregation of phosphorus at grain
boundaries of Fe–P, Fe–C–P, Fe–Cr–P, and Fe–Cr–C–P alloys. Met. Sci. 15 (9),
401–408.

Friedman, J.H., Greedy function approximation: A gradient boosting machine. Ann.
Statist. 29 (5), 1189–1232.

Gardner, M.W., Dorling, S., 1998. Artificial neural networks (the multilayer perceptron)-
a review of applications in the atmospheric sciences. Atmos. Environ. 32 (14–15),
2627–2636.

http://refhub.elsevier.com/S0952-1976(23)00102-1/sb1
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb1
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb1
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb2
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb2
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb2
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb2
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb2
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb3
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb3
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb3
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb4
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb4
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb4
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb5
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb6
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb6
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb6
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb7
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb7
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb7
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb8
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb9
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb9
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb9
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb10
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb10
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb10
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb10
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb10
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb11
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb11
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb11
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb11
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb11
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb12
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb12
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb12
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb12
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb12
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb13
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb13
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb13
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb13
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb13
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb14
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb14
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb14
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb14
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb14
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb15
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb16
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb16
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb16
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb16
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb16
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb17
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb17
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb17
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb17
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb17
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb17
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb17
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb18
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb18
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb18
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb19
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb19
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb19
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb19
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb19
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb20
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb20
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb20
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb21
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb21
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb21
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb21
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb21


B.S. Saini, D. Chakrabarti, N. Chakraborti et al. Engineering Applications of Artificial Intelligence 120 (2023) 105918
Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Mach. Learn. 63
(1), 3–42.

Ghosh, A., Sahoo, S., Ghosh, M., Ghosh, R., Chakrabarti, D., 2014. Effect of microstruc-
tural parameters, microtexture and matrix strain on the Charpy impact properties
of low carbon HSLA steel containing MnS inclusions. Mater. Sci. Eng. A 613, 37–47.

Gladman, T., 1997. The Physical Metallurgy of Microalloyed Steels. Maney Pub.
Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E., 2015. Peeking inside the black box:

Visualizing statistical learning with plots of individual conditional expectation. J.
Comput. Graph. Statist. 24 (1), 44–65.

Guo, A., Li, S., Guo, J., Li, P., Ding, Q., Wu, K., He, X., 2008. Effect of zirconium
addition on the impact toughness of the heat affected zone in a high strength low
alloy pipeline steel. Mater. Charact. 59 (2), 134–139.

Heikkinen, R., Sipila, J., Ojalehto, V., Miettinen, K., Flexible data driven inventory
management with interactive multiobjective lot size optimization. Int. J. Logist.
Syst. Manage..

Isheim, D., Gagliano, M.S., Fine, M.E., Seidman, D.N., 2006. Interfacial segregation at
Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer
scale. Acta Mater. 54 (3), 841–849.

Ishibuchi, H., Tsukamoto, N., Nojima, Y., 2008. Evolutionary many-objective optimiza-
tion: A short review. In: Proceedings of the 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence). pp. 2419–2426.

Jin, Y., Wang, H., Sun, C., 2021. Data-Driven Evolutionary Optimization. Springer.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.-Y.,

2017. LightGBM: A highly efficient gradient boosting decision tree. In: Guyon, I.,
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.
(Eds.), Advances in Neural Information Processing Systems, vol. 30. Curran
Associates, Inc..

Kim, N.J., 1983. The physical metallurgy of HSLA linepipe steels—a review. JOM 35
(4), 21–27.

Kim, S.-H., Kang, C.-Y., Bang, K.-S., 2001. Weld metal impact toughness of electron
beam welded 9% Ni steel. J. Mater. Sci. 36 (5), 1197–1200.

Lancaster, J.F., 1999. Metallurgy of Welding, sixth ed Elsevier.
Li, Y., Crowther, D.N., Green, M.J.W., Mitchell, P.S., Baker, T.N., 2001. The effect of

vanadium and niobium on the properties and microstructure of the intercritically
reheated coarse grained heat affected zone in low carbon microalloyed steels. ISIJ
Int. 41 (1), 46–55.

Li, K., Wang, R., Zhang, T., Ishibuchi, H., 2018. Evolutionary many-objective
optimization: A comparative study of the state-of-the-art. IEEE Access 6,
26194–26214.

Matheron, G., 1963. Principles of geostatistics. Econ. Geol. 58 (8), 1246–1266.
Mesquita, R., Kestenbach, H.-J., 2011. On the effect of silicon on toughness in recent

high quality hot work steels. Mater. Sci. Eng. A 528 (13–14), 4856–4859.
Miettinen, K., 1999. Nonlinear Multiobjective Optimization. Kluwer Academic

Publishers.
Miettinen, K., Mäkelä, M.M., 2002. On scalarizing functions in multiobjective

optimization. OR Spectrum 24 (2), 193–213.
Miettinen, K., Mäkelä, M.M., 2006. Synchronous approach in interactive multiobjective

optimization. European J. Oper. Res. 170 (3), 909–922.
Miettinen, K., Ruiz, F., Wierzbicki, A.P., 2008. Introduction to multiobjective optimiza-

tion: Interactive approaches. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R.
(Eds.), Multiobjective Optimization: Interative and Evolutionary Approaches.
Springer, pp. 27–57.
15
Misitano, G., Saini, B.S., Afsar, B., Shavazipour, B., Miettinen, K., 2021. DESDEO: The
modular and open source framework for interactive multiobjective optimization.
IEEE Access 9, 148277–148295.

Morrison, W., 2009. Microalloy steels–the beginning. Mater. Sci. Technol. 25 (9),
1066–1073.

Nakayama, H., Sawaragi, Y., 1984. Satisficing trade-off method for multiobjective
programming. In: Grauer, M., Wierzbicki, A.P. (Eds.), Interactive Decision Analysis.
Springer, Berlin, Heidelberg, pp. 113–122.

Norström, L.-Å., Vingsbo, O., 1979. Influence of nickel on toughness and ductile-brittle
transition in low-carbon martensite steels. Met. Sci. 13 (12), 677–684.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Reback, J., et al., 2020. Pandas-dev/pandas: Pandas, version latest. http://dx.doi.org/
10.5281/zenodo.3509134.

Roy, S., Saini, B.S., Chakrabarti, D., Chakraborti, N., 2020. Mechanical properties of
micro-alloyed steels studied using a evolutionary deep neural network. Mater.
Manuf. Process. 35 (6), 611–624.

Rozhkova, E., Garber, M., Tsypin, I., 1981. Effect of manganese on the transformation
of austenite in white chromium cast irons. Metal Science and Heat Treatment 23
(1), 59–63.

Ruiz, F., Luque, M., Cabello, J.M., 2009. A classification of the weighting schemes in
reference point procedures for multiobjective programming. J. Oper. Res. Soc. 60
(4), 544–553.

Ruiz, F., Luque, M., Miettinen, K., 2012. Improving the computational efficiency in a
global formulation (GLIDE) for interactive multiobjective optimization. Ann. Oper.
Res. 197 (1), 47–70.

Ruiz, A.B., Sindhya, K., Miettinen, K., Ruiz, F., Luque, M., 2015. E-NAUTILUS: a
decision support system for complex multiobjective optimization problems based
on the NAUTILUS method. European J. Oper. Res. 246 (1), 218–231.

Saini, B.S., Hakanen, J., Miettinen, K., 2020. A new paradigm in interactive evolu-
tionary multiobjective optimization. In: Back, T., Preuss, M., Deutz, A., Wang, H.,
Doerr, M., Trautmann, H. (Eds.), Parallel Problem Solving from Nature, PPSN XVI,
16th International Conference, Part II. Springer, pp. 243–256.

Steinwart, I., Christmann, A., 2008. Support Vector Machines. Springer.
Tabatabaei, M., Hakanen, J., Hartikainen, M., Miettinen, K., Sindhya, K., 2015. A survey

on handling computationally expensive multiobjective optimization problems using
surrogates: non-nature inspired methods. Struct. Multidiscip. Optim. 52 (1), 1–25.

Uggowitzer, P.J., Magdowski, R., Speidel, M.O., 1996. Nickel free high nitrogen
austenitic steels. ISIJ Int. 36 (7), 901–908.

Vervynckt, S., Verbeken, K., Lopez, B., Jonas, J., 2012. Modern HSLA steels and role
of non-recrystallisation temperature. Int. Mater. Rev. 57 (4), 187–207.

Wang, H., Jin, Y., Sun, C., Doherty, J., 2018. Offline data-driven evolutionary
optimization using selective surrogate ensembles. IEEE Trans. Evol. Comput. 23
(2), 203–216.

Wilson, F., Gladman, T., 1988. Aluminium nitride in steel. Int. Mater. Rev. 33 (1),
221–286.

Yan, W., Shan, Y., Yang, K., 2006. Effect of TiN inclusions on the impact toughness of
low-carbon microalloyed steels. Metall. Mater. Trans. A 37 (7), 2147–2158.

Ye, D., Li, J., Jiang, W., Su, J., Zhao, K., 2012. Effect of Cu addition on microstructure
and mechanical properties of 15% Cr super martensitic stainless steel. Mater. Des.
41, 16–22.

http://refhub.elsevier.com/S0952-1976(23)00102-1/sb22
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb22
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb22
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb23
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb23
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb23
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb23
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb23
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb24
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb25
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb25
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb25
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb25
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb25
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb26
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb26
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb26
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb26
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb26
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb27
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb27
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb27
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb27
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb27
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb28
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb28
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb28
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb28
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb28
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb29
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb29
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb29
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb29
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb29
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb30
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb31
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb31
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb31
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb31
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb31
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb31
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb31
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb31
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb31
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb32
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb32
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb32
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb33
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb33
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb33
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb34
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb35
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb35
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb35
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb35
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb35
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb35
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb35
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb36
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb36
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb36
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb36
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb36
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb37
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb38
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb38
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb38
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb39
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb39
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb39
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb40
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb40
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb40
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb41
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb41
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb41
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb42
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb42
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb42
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb42
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb42
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb42
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb42
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb43
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb43
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb43
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb43
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb43
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb44
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb44
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb44
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb45
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb45
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb45
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb45
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb45
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb46
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb46
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb46
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb47
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb47
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb47
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb47
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb47
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb47
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb47
http://dx.doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.5281/zenodo.3509134
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb49
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb49
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb49
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb49
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb49
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb50
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb50
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb50
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb50
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb50
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb51
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb51
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb51
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb51
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb51
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb52
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb52
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb52
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb52
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb52
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb53
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb53
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb53
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb53
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb53
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb54
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb54
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb54
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb54
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb54
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb54
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb54
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb55
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb56
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb56
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb56
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb56
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb56
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb57
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb57
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb57
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb58
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb58
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb58
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb59
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb59
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb59
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb59
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb59
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb60
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb60
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb60
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb61
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb61
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb61
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb62
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb62
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb62
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb62
http://refhub.elsevier.com/S0952-1976(23)00102-1/sb62

	Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework
	Introduction
	Background
	Multiobjective optimization
	Microalloyed steels

	Preprocessing, Surrogate Modelling and Problem Formulation
	Preprocessing the Data
	Model selection and training
	Model validation
	Problem Formulation

	Optimization and Decision Making
	Non-interactive optimization
	MultiDM/IOPIS
	Interactive Optimization Process

	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A. Effect of concentrations of alloying elements on metallurgical properties of microalloyed steels
	Appendix B. Acronyms used in the article
	References


