A Data-Driven Surrogate-Assisted Evolutionary Algorithm Applied to a Many-Objective Blast Furnace Optimization Problem
Chugh, T., Chakraborti, N., Sindhya, K., & Jin, Y. (2017). A Data-Driven Surrogate-Assisted Evolutionary Algorithm Applied to a Many-Objective Blast Furnace Optimization Problem. Materials and Manufacturing Processes, 32(10), 1172-1178. https://doi.org/10.1080/10426914.2016.1269923
Julkaistu sarjassa
Materials and Manufacturing ProcessesPäivämäärä
2017Tekijänoikeudet
© 2017 Taylor & Francis. This is a final draft version of an article whose final and definitive form has been published by Taylor & Francis. Published in this repository with the kind permission of the publisher.
A new data-driven reference vector-guided evolutionary algorithm has been successfully implemented to construct surrogate models for various objectives pertinent to an industrial blast furnace. A total of eight objectives have been modeled using the operational data of the furnace using 12 process variables identified through a principal component analysis and optimized simultaneously. The capability of this algorithm to handle a large number of objectives, which has been lacking earlier, results in a more efficient setting of the operational parameters of the furnace, leading to a precisely optimized hot metal production process.
Julkaisija
Taylor & Francis Inc.ISSN Hae Julkaisufoorumista
1042-6914Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26405251
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Multiobjective shape design in a ventilation system with a preference-driven surrogate-assisted evolutionary algorithm
Chugh, Tinkle; Kratky, Tomas; Miettinen, Kaisa; Jin, Yaochu; Makkonen, Pekka (ACM, 2019)We formulate and solve a real-world shape design optimization problem of an air intake ventilation system in a tractor cabin by using a preference-based surrogate-assisted evolutionary multiobjective optimization algorithm. ... -
A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization
Chugh, Tinkle; Jin, Yaochu; Miettinen, Kaisa; Hakanen, Jussi; Sindhya, Karthik (Institute of Electrical and Electronics Engineers, 2018)We propose a surrogate-assisted reference vector guided evolutionary algorithm (EA) for computationally expensive optimization problems with more than three objectives. The proposed algorithm is based on a recently developed ... -
Surrogate-assisted evolutionary biobjective optimization for objectives with non-uniform latencies
Chugh, Tinkle; Allmendinger, Richard; Ojalehto, Vesa; Miettinen, Kaisa (Association for Computing Machinery (ACM), 2018)We consider multiobjective optimization problems where objective functions have different (or heterogeneous) evaluation times or latencies. This is of great relevance for (computationally) expensive multiobjective optimization ... -
Probabilistic Selection Approaches in Decomposition-based Evolutionary Algorithms for Offline Data-Driven Multiobjective Optimization
Mazumdar, Atanu; Chugh, Tinkle; Hakanen, Jussi; Miettinen, Kaisa (IEEE, 2022)In offline data-driven multiobjective optimization, no new data is available during the optimization process. Approximation models, also known as surrogates, are built using the provided offline data. A multiobjective ... -
Treed Gaussian Process Regression for Solving Offline Data-Driven Continuous Multiobjective Optimization Problems
Mazumdar, Atanu; López-Ibáñez, Manuel; Chugh, Tinkle; Hakanen, Jussi; Miettinen, Kaisa (MIT Press, 2023)For offline data-driven multiobjective optimization problems (MOPs), no new data is available during the optimization process. Approximation models (or surrogates) are first built using the provided offline data and an ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.