Show simple item record

dc.contributor.authorKow, Pu-Zhao
dc.contributor.authorLin, Yi-Hsuan
dc.contributor.authorWang, Jenn-Nan
dc.date.accessioned2023-02-02T11:39:22Z
dc.date.available2023-02-02T11:39:22Z
dc.date.issued2022
dc.identifier.citationKow, P.-Z., Lin, Y.-H., & Wang, J.-N. (2022). The Calderón Problem for the Fractional Wave Equation : Uniqueness and Optimal Stability. <i>SIAM Journal on Mathematical Analysis</i>, <i>54</i>(3), 3379-3419. <a href="https://doi.org/10.1137/21M1444941" target="_blank">https://doi.org/10.1137/21M1444941</a>
dc.identifier.otherCONVID_150970521
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/85312
dc.description.abstractWe study an inverse problem for the fractional wave equation with a potential by the measurement taking on arbitrary subsets of the exterior in the space-time domain. We are interested in the issues of uniqueness and stability estimate in the determination of the potential by the exterior Dirichlet-to-Neumann map. The main tools are the qualitative and quantitative unique continuation properties for the fractional Laplacian. For the stability, we also prove that the log type stability estimate is optimal. The log type estimate shows the striking difference between the inverse problems for the fractional and classical wave equations in the stability issue. The results hold for any spatial dimension n∈Nen
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSociety for Industrial & Applied Mathematics (SIAM)
dc.relation.ispartofseriesSIAM Journal on Mathematical Analysis
dc.rightsIn Copyright
dc.subject.otherCalder´on problem
dc.subject.otherperidynamic
dc.subject.otherfractional Laplacian
dc.subject.othernonlocal
dc.subject.otherfractional wave equation
dc.subject.otherstrong uniqueness
dc.subject.otherRunge approximation
dc.subject.otherlogarithmic stability
dc.titleThe Calderón Problem for the Fractional Wave Equation : Uniqueness and Optimal Stability
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202302021594
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3379-3419
dc.relation.issn0036-1410
dc.relation.numberinseries3
dc.relation.volume54
dc.type.versionacceptedVersion
dc.rights.copyright© Authors, 2022
dc.rights.accesslevelopenAccessfi
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysoinversio-ongelmat
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p27912
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1137/21M1444941
jyx.fundinginformationThe second author is partially supported by the Ministry of Science and Technology Taiwan, under the Columbus Program: MOST-109-2636-M-009-006, 2020-2025. The third author is partly supported by MOST 108-2115-M-002-002-MY3 and 109-2115-M-002-001-MY3.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright