Minimizers for the Thin One‐Phase Free Boundary Problem
Engelstein, M., Kauranen, A., Prats, M., Sakellaris, G., & Sire, Y. (2021). Minimizers for the Thin One‐Phase Free Boundary Problem. Communications on Pure and Applied Mathematics, 74(9), 1971-2022. https://doi.org/10.1002/cpa.22011
Julkaistu sarjassa
Communications on Pure and Applied MathematicsPäivämäärä
2021Tekijänoikeudet
© 2021 Wiley Periodicals LLC.
We consider the “thin one-phase" free boundary problem, associated to minimizing a weighted Dirichlet energy of the function in urn:x-wiley:00103640:media:cpa22011:cpa22011-math-0001 plus the area of the positivity set of that function in urn:x-wiley:00103640:media:cpa22011:cpa22011-math-0002. We establish full regularity of the free boundary for dimensions urn:x-wiley:00103640:media:cpa22011:cpa22011-math-0003, prove almost everywhere regularity of the free boundary in arbitrary dimension, and provide content and structure estimates on the singular set of the free boundary when it exists. All of these results hold for the full range of the relevant weight.
While our results are typical for the calculus of variations, our approach does not follow the standard one first introduced by Alt and Caffarelli in 1981. Instead, the nonlocal nature of the distributional measure associated to a minimizer necessitates arguments that are less reliant on the underlying PDE. © 2021 Wiley Periodicals LLC.
...
Julkaisija
WileyISSN Hae Julkaisufoorumista
0010-3640Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/99049806
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On FE-grid relocation in solving unilateral boundary value problems by FEM
Haslinger, Jaroslav; Neittaanmäki, Pekka; Salmenjoki, Kimmo (Akademie věd České republiky, Matematický ústav, 1992)We consider FE-grid optimization in elliptic unilateral boundary value problems. The criterion used in grid optimization is the total potential energy of the system. It is shown that minimization of this cost functional ... -
On the convergence of the finite element approximation of eigenfrequencies and eigenvectors to Maxwell's boundary value problem
Neittaanmäki, Pekka; Picard, Rainer (Suomalainen tiedeakatemia, 1981) -
Optimal shape design and unilateral boundary value problems. I.
Haslinger, Jaroslav; Neittaanmäki, Pekka; Tiihonen, Timo; Kaarna, Arto (Wiley, 1988)In the first part we give a general existence theorem and a regularization method for an optimal control problem where the control is a domain in R″ and where the system is governed by a state relation which includes ... -
A Steepest Descent Method for the Approximation of the Boundary Control in Two-Phase Stefan Problem
Neittaanmäki, Pekka; Tiba, D. (Cluj-Napoca : Éditions de l'Académie Roumaine, 1987) -
The radiation problem for the Schrödinger operator in some domains with noncompact boundaries
Neittaanmäki, Pekka; Saranen, Jukka (Societas Scientiarum Fennica, 1982)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.