The radiation problem for the Schrödinger operator in some domains with noncompact boundaries
Neittaanmäki, P. & Saranen, J. (1982). The radiation problem for the Schrödinger operator in some domains with noncompact boundaries. Commentationes Physico-Mathematicae 52, 1-14.
Julkaistu sarjassa
Commentationes Physico-MathematicaePäivämäärä
1982Pääsyrajoitukset
Tekijänoikeudet
© Societas Scientiarum Fennica
Julkaisija
Societas Scientiarum FennicaISSN Hae Julkaisufoorumista
0069-6609Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Fixed domain approaches in shape optimization problems with Dirichlet boundary conditions
Neittaanmäki, Pekka; Pennanen, Anssi; Tiba, Dan (IOP Publishing, 2009)Fixed domain methods have well-known advantages in the solution of variable domain problems including inverse interface problems. This paper examines two new control approaches to optimal design problems governed by general ... -
Increasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities
Lu, Shuai; Salo, Mikko; Xu, Boxi (IOP Publishing, 2022)We consider increasing stability in the inverse Schrödinger potential problem with power type nonlinearities at a large wavenumber. Two linearization approaches, with respect to small boundary data and small potential ... -
The Calderón problem for the fractional Schrödinger equation
Ghosh, Tuhin; Salo, Mikko; Uhlmann, Gunther (Mathematical Sciences Publishers, 2020)We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness ... -
An inverse problem for the fractional Schrödinger equation in a magnetic field
Covi, Giovanni (Institute of Physics, 2020)This paper shows global uniqueness in an inverse problem for a fractional magnetic Schrödinger equation (FMSE): an unknown electromagnetic field in a bounded domain is uniquely determined up to a natural gauge by infinitely ... -
The Calderón problem for the fractional Schrödinger equation with drift
Cekić, Mihajlo; Lin, Yi-Hsuan; Rüland, Angkana (Springer, 2020)We investigate the Calderón problem for the fractional Schrödinger equation with drift, proving that the unknown drift and potential in a bounded domain can be determined simultaneously and uniquely by an infinite number ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.