
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Minimizers for the Thin One‐Phase Free Boundary Problem

© 2021 Wiley Periodicals LLC.

Accepted version (Final draft)

Engelstein, Max; Kauranen, Aapo; Prats, Martí; Sakellaris, Georgios; Sire, Yannick

Engelstein, M., Kauranen, A., Prats, M., Sakellaris, G., & Sire, Y. (2021). Minimizers for the Thin
One‐Phase Free Boundary Problem. Communications on Pure and Applied Mathematics, 74(9),
1971-2022. https://doi.org/10.1002/cpa.22011

2021



Minimizers for the thin one-phase free boundary problem

Max Engelstein ∗, Aapo Kauranen † , Mart́ı Prats ‡ , Georgios Sakellaris § , Yannick
Sire ¶

February 1, 2023

Abstract

We consider the “thin one-phase” free boundary problem, associated to minimizing a
weighted Dirichlet energy of the function in Rn+1

+ plus the area of the positivity set of that
function in Rn. We establish full regularity of the free boundary for dimensions n ≤ 2, prove
almost everywhere regularity of the free boundary in arbitrary dimension and provide content
and structure estimates on the singular set of the free boundary when it exists. All of these
results hold for the full range of the relevant weight.

While our results are typical for the calculus of variations, our approach does not follow
the standard one first introduced in [AC81]. Instead, the nonlocal nature of the distribu-
tional measure associated to a minimizer necessitates arguments which are less reliant on the
underlying PDE.
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‡MP (Universitat Autònoma de Barcelona, Catalonia): mprats@mat.uab.cat
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1 Introduction

This article is devoted to the study of the regularity properties of a weighted version of the thin
one-phase problem. More precisely we investigate even, nonnegative minimizers of the following
functionals: denote x ∈ Rn+1 by x = (x′, y) ∈ Rn ×R, and for β ∈ (−1,1) we define

J (v,Ω) ∶=
ˆ

Ω

∣y∣β ∣∇v∣2 dx +m({v > 0} ∩Rn ∩Ω), (1.1)

where m stands for the n-dimensional Lebesgue measure. Here, and throughout the paper, the in-
tegration is done with respect to the (n+1)-dimensional Lebesgue measure unless stated otherwise.
This functional is finite for open sets, Ω, and functions in the weighted Hilbert space,

H1(β,Ω) ∶= {v ∈ L2(Ω; ∣y∣β) ∶ ∇v ∈ L2(Ω; ∣y∣β)},

equipped with the usual weighted norm.
Our main concern is to investigate fine regularity properties of the free boundary of minimizers

v of (1.1), that is the set,
F (v) ∶= ∂Rn {v(x,0) > 0} ∩Ω.

Since the free boundary lies on a codimension 1 subspace of the ambient space Rn+1, such a problem
is called a thin one-phase free boundary problem. This type of free boundary problem has been
investigated for the first time by Caffarelli, Roquejoffre and the last author in [CRS10b] in relation
with the theory of semi-permeable membranes (see, e.g., [DL76]). As we will describe later this
is an analogue of the classical one-phase problem (also called the Bernoulli problem) but for the
fractional Laplacian.

The Bernoulli problem was first treated in a rigorous mathematical way by Alt and Caffarelli
in the seminal paper [AC81]: in the Bernoulli problem we consider minimizers of (1.1) where β = 0
and the second term is replaced by Ln+1({v > 0}∩Ω) (where Ln+1 stands for the Lebesgue measure
in Rn+1). In particular, for the Bernoulli problem, the free boundary fully sits in the ambient space,
Rn+1. In [AC81], the authors provided a general strategy to attack this type of problem. Out of
necessity we needed to modify this blueprint in several substantial ways (see below for a more
detailed comparison). For more information on the one-phase problem (and some of its variants)
we refer to the book of Caffarelli and Salsa (and references therein) [CS05], and to the more recent
survey of De Silva, Ferrari and Salsa [DSFS19].
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As noticed in [CRS10b], problem (1.1) is related in a tight way to the standard one-phase free
boundary problem but with the Dirichlet energy replaced by the Gagliardo semi-norm [u]Ḣα , for

α = 1−β
2

∈ (0,1). This connection suggests that the thin one-phase problem is actually intrinsically
a nonlocal problem, though the energy in (1.1) is clearly local.

Connection with the fractional one-phase problem

As previously mentioned, the functional J introduced by Caffarelli, Roquejoffre and the last author
in [CRS10b] is a local version of the following nonlocal free boundary problem: given a function
f ∈ L1

loc(Rn) with suitable decay at infinity, we can define its fractional Laplacian at x ∈ Rn by

(−∆)αf(x) = cn,α p.v.
ˆ
Rn

f(x) − f(ξ)
∣x − ξ∣n+2α

dξ.

At the formal level, we are interested in solutions of the free boundary problem

⎧⎪⎪⎨⎪⎪⎩

(−∆)αf = 0 in Ω ∩ {f > 0},
∂αν f = A on Ω ∩ F (f),

(1.2)

where ∂αν f(x) ∶= limΩ∩{f>0}∋ξ→x
f(ξ)−f(x)
((ξ−x)⋅ν(x))α and where f satisfies a given “Dirichlet boundary

condition” on the complement of Ω.
As in the case of the classical Laplacian (see [AC81]), we are interested in obtaining equation

(1.2) as the Euler-Lagrange equation of a certain functional. Given a locally integrable function
f , consider its fractional Sobolev energy

[f]Ḣα(Rn) ∶=
¨

R2n

∣f(x) − f(ξ)∣2
∣x − ξ∣n+2α

dξ dx.

Since we want to study competitors which vary only in a certain domain Ω, it is natural to consider
only the integration region which may suffer variations when changing candidates. Thus, we define
the energy

J(f,Ω) ∶= cn,α
¨

R2n∖(Ωc)2

∣f(x) − f(ξ)∣2
∣x − ξ∣n+2α

dξ dx +m({f > 0} ∩Ω). (1.3)

We say that f ∈ L1
loc is a minimizer of J in Ω if J(f,Ω) is finite and J(f,Ω) ≤ J(g,Ω) for every g

satisfying that f −g ∈ Ḣα(Rn) and such that f(x) = g(x) for almost every x ∈ Ωc. We say that f is
a global minimizer if it is a minimizer for every open set Ω ⊂ Rn. Note that both terms in (1.3) are
in competition, since a minimizer of the fractional Sobolev energy in Ω is α-harmonic and, thus, if
it is non-negative outside of Ω it is strictly positive inside of Ω, maximizing the second term.

Consider now the Poisson kernel for fixed n ∈ N and 0 < α < 1

Py(ξ) ∶= Pn,α(ξ, y) = cn,α
∣y∣2α

∣(ξ, y)∣n+2α
for every (ξ, y) ∈ Rn ×R. (1.4)

The Poisson extension of f ∈ L1
loc(Rn) is given by

u(x′, y) ∶= f ∗ Py(x′) =
ˆ
Rn
Pn,α(ξ, y)f(x′ − ξ)dξ for every (x′, y) ∈ Rn ×R. (1.5)

By [CS07], with a convenient choice of the constant one gets

lim
y↘0

y1−2αuy(x′, y) = −(−∆)αf(x′)
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in every point where f is regular enough. Moreover, the extension satisfies the localized equation
∇ ⋅ (∣y∣β∇u) = 0 weakly, away from Rn × {0}. The whole point is that local minimizers of (1.3) can
be extended via the previous Poisson kernel Py to (even) minimizers of (1.1) (see the Appendix
for a precise statement). Therefore, the thin one-phase problem appears as a “localization” of
the one-phase problem for the fractional Laplacian. Notice that, and this is of major importance
for us, this localization technique does not carry over to other types of nonlocal operators besides
pure powers of second-order elliptic operators. This is a major drawback of the theory, in the
sense that, at the moment, it seems to be impossible to tackle one-phase problems involving more
general operators than the fractional Laplacian. The main point is we do not know how to prove
any kind of monotonicity for general integral operators.

This connection between the nonlocal analogue of the Bernoulli problem and our thin one-
phase problem allows us to simplify several arguments by working in the purely nonlocal setting.
However, this underlying nonlocality is also the reason why several results, which came more easily
in the setting of [AC81], are non-trivial or substantially harder for us. For example, perturbations
of solutions need to take into account long range effects which makes classical, local, perturbation
arguments much more difficult.

In the paper [CRS10b], the authors proved basic properties of the minimizers for the functional
J such as optimal regularity, non-degeneracy near the free boundary, and positive densities of
phases. Also they provided an argument for n = 2 showing that Lipschitz free boundaries are
C1. A feature of the functional J is that the weight ∣y∣β is either degenerate or singular at {y = 0}
(except in the case β = 0). Such weights belong to the Muckenhoupt class A2 and the seminal paper
of Fabes, Kenig and Serapioni [FKS82] investigated regularity issues for elliptic PDEs involving
such weights (among other things). After that, [DSS14] proved an ε-regularity result and [All12]
showed the existence of a monotonicity formula for this setting.

In the case β = 0, the problem is still degenerate in the sense that derivatives near the free
boundary blow up. The case β = 0 has been thoroughly investigated in the series of papers by De
Silva, Savin and Roquejoffre [DR12, DS12, DS15].

The main goal of our paper is to provide a full picture of the regularity of the free boundary for
any power β ∈ (−1,1), both in terms of measure-theoretic statements and partial (or full) regularity
results. From this point of view our contribution is a complement of the paper by De Silva and
Savin [DS15] for β = 0. It has to be noticed that the standard approach to regularity of Lipschitz
free boundaries as developed by Caffarelli (see the monograph [CS05]) does not seem to work in
our setting.

Our approach to regularity

In [AC81] (and many subsequent works), the minimizing property of the solution is used to prove
that the distributional Laplacian of that solution is an Ahlfors-regular measure supported on the
free boundary. This implies (amongst other things) that the free boundary is a set of (locally)
finite perimeter, and thus almost every point on the free boundary has a measure theoretic tangent.
One can then work purely with the weak formula (i.e. the analogue of (1.2)) to prove a “flat
implies smooth” result which, together with the existence almost everywhere of a measure theoretic
tangent, has as a consequence that the free boundary is almost everywhere a smooth graph and
the free boundary condition in (1.2) holds in a classical sense at the smooth points.

A similar “flat implies smooth” result exists in our context (this is essentially due to De Silva,
Savin and the last author, [DSS14], see Theorem 2.4 below). However, showing that the free
boundary is the boundary of a set of finite perimeter proves to be much more difficult. Due to
the nonlocal nature of the problem, −div(∣y∣β∇u) (considered as a distribution) is not supported
on the free boundary. Furthermore, the scaling of this measure does not allow us to conclude that
the free boundary has the correct dimension (much less that it is Ahlfors regular).
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To prove finite perimeter, we take the following approach inspired by the work of de Silva and
Savin: after establishing some preliminaries we prove crucial compactness results. This, along
with a monotonicity formula originally due to Allen [All12] allows us to run a dimension reduction
argument in the vein of Federer or (in the context of free boundary problems) Weiss [Wei99]. With
this tool in hand, we show that the set of points at which no blow-up is flat is a set of lower
dimension. Locally finite perimeter and regularity for the reduced boundary then follow from a
covering argument and some standard techniques.

Here and throughout the paper, we will denote the ball of radius r in Rn+1 centered at the
origin by Br, and B′

r ∶= Br ∩Rn × {0}. Moreover, for the definition of Hβ , see Section 2. We may
then summarize our regularity results in the following theorem.

Theorem 1.1. [Main Regularity Theorem] Let u ∈ Hβ(B1) be a (non-negative, even) local mini-
mizer of J in B1 ⊂ Rn+1. Let B′

1,+(u) ∶= {x = (x′,0) ∈ B1 ∶ u(x) > 0}, let F (u) be the boundary of
B′

1,+(u) inside of B′
1 and assume that 0 ∈ F (u). Then,

1. B′
1,+(u) (as a subset of Rn × {0}) is a set of locally finite perimeter in B′

1.

2. We can write the free boundary as a disjoint union F (u) =R(u)∪Σ(u), where R(u) is open
inside F (u), and for x ∈R(u) there exists an rx > 0 such that B(x, rx)∩F (u) can be written
as the graph of a C1,s-continuous function.

3. Furthermore, the set Σ(u) is of Hausdorff dimension ≤ n−3 (and, therefore, of Hn−1-measure
zero). In particular, for n ≤ 2, Σ(u) is empty, and moreover, if n = 3 then Σ(u) is discrete.

The constants (implicit in the set of finite perimeter, and the Hölder continuity of the functions
whose graph gives the free boundary) depend on n and β but not on ∥u∥Hβ(B1).

As usual Σ(u) ⊂ F (u) is called the singular set of the free boundary: the set of points around
which F (u) cannot be parameterized as a smooth graph and all the blow-ups will be non-trivial
minimal cones, see Theorem 2.4.

Our second contribution concerns the structure and size of the singular set. It builds on
recent major works on quantitative stratification [NV17], extended to free boundary problems (in
particular the one-phase problem) by Edelen and the first author [EE19].

Theorem 1.2. Let u ∈ Hβ(B1) be a (non-negative, even) local minimizer of J in B1 and 0 ∈ F (u).
Let B′

1,+(u) ∶= {x = (x′,0) ∈ B1 ∶ u(x) > 0} and F (u) be the boundary of B′
1,+(u) inside B′

1. Then,
there exists a k∗α ≥ 3 such that Σ(u) is (n − k∗α)-rectifiable and

Hn−k
∗
α(Σ(u) ∩D) ≤ Cn,α,dist(D,∂B1) for every D ⊂⊂ B1.

In [DJ09], De Silva and Jerison constructed a singular minimizer for the Alt-Caffarelli one-phase
problem in dimension 7, giving the dimension bound k∗ ≤ 8 in the previous theorem in this case
(see [EE19]). This result is not known for the thin one-phase problem. The reason is that the one-
phase problem, seen from the nonlocal point of view involving the fractional Laplacian, is related to
the so-called nonlocal minimal surfaces introduced by Caffarelli, Roquejoffre and Savin [CRS10a].
Indeed, in [SV12], the authors proved that a fractional version of Allen-Cahn equation converges
variationally to the standard perimeter functional for α ≥ 1/2 and to the so-called nonlocal minimal
surfaces for α < 1/2. We can then conjecture the bound k∗α ≤ 8 for α ≥ 1/2 by analogy with the
result for the standard one-phase problem but the bound for α < 1/2 is not clear at all. However,
one knows that there is no singular cone in dimension 2 for nonlocal minimal surfaces [SV13] and
that the Bernstein problem is known for those in dimensions 2 and 3 [FV17].

We would like also to make a last remark about a result which is of purely nonlocal nature.
In the case of the one-phase problem, one can show that the distributional Laplacian is a Radon
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measure along the free boundary. In the case of the thin one-phase free boundary problem, due
to the nonlocality of the problem, such a behavior does not happen in the sense that we will show
that the fractional Laplacian is an absolutely continuous measure with respect to n-dimensional
Lebesgue measure with a precise behavior. This phenomenon is of purely nonlocal nature and
similar to the fact that the fractional harmonic measure is of trivial nature. More precisely, every
minimizer u satisfies ∇⋅(∣y∣β∇u) = 0 weakly, away from Rn∩{u ≤ 0}. Thus, equation (1.2) above can
be understood as an Euler-Lagrange equation for the functional J in the sense that the restriction
to Rn of a given minimizer u in Ω ⊂ Rn+1, harmonic away from Rn × {0} and with asymptotic
behavior u(x, y) = O(∣(x, y)∣α) is always a solution to (1.2) for A = A(α) at “nice” points of the
free boundary.

A brief summary of this paper follows. In Sections 3 and 4 we discuss compactness of minimizers
and we recall Allen’s monotonicity formula to derive some immediate consequences. In Section 5
we show that the positive phase is a set of locally finite perimeter, establishing the first part of
Theorem 1.1 (modulo energy bounds), and we show that the singular set can be identified using
the Allen-Weiss density. Section 6 is devoted to deducing full regularity of minimizers in R2+1

concluding the proof of Theorem 1.1.
Once we have established the finite perimeter, in Section 7 we remove the dependence of

the estimates on the energy of the minimizer in the previous theorems, using a rather subtle
argument which combines results from all the previous sections. A crucial step is to analyze some
basic properties of the distributional fractional Laplacian of our minimizer. As stated above this
analysis will not be enough to establish that the positivity set of the minimizer is a set of locally
finite perimeter. We believe that many of these results may be of independent interest. For
example, corresponding results for the classical Bernoulli problem have been used to understand
free boundary problems for harmonic measure (see [KT03]).

Finally, Section 8 is devoted to the proof of Theorem 1.2.

Notation

We denote the constants that depend on the dimension n, α and perhaps some other fixed pa-
rameters which are clear from the context by C. Their value may change from an occurrence to
another. On the other hand, constants with subscripts as C0 retain their values along the text.
For a, b ≥ 0, we write a ≲ b if there is C > 0 such that a ≤ Cb. We write a ≈ b to mean a ≲ b ≲ a.

Let u be a continuous function in Rn+1. Then we write Ω+(u) ∶= Ω ∩ {u > 0}, and we denote
the zero phase, the positive phase and the free boundary by

Ω0(u) ∶= {x ∈ Rn × {0} ∶ u(x) = 0}○,
Ω′
+(u) ∶= Ω+ ∩ (Rn × {0}) = {x ∈ Rn × {0} ∶ u(x) > 0}, and

F (u) ∶= FΩ(u) = ∂(Ω+(u) ∩Rn × {0}) ∩Ω,

respectively. Here both the boundary and the interior are taken with respect to the standard
topology in Rn. Note that Rn × {0} is the disjoint union of Ω0(u), Ω′

+(u) and F (u) whenever u
is non-negative. We also call Fred(u) = Fred,Ω(u) the points of FΩ(u) where the free boundary is
expressed locally as a C1 surface. Finally, let Σ(u) = ΣΩ(u) = FΩ(u) ∖ Fred,Ω(u). In general we
will write Ω′ ∶= Ω ∩ (Rn × {0}).

Throughout the paper we will often fix β ∈ (−1,1) but then refer to α ∈ (0,1) or vice versa.
These two numbers are always connected by the relationship α = 1−β

2
.
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2 Preliminaries

In this section, we provide the known results concerning the problem under consideration. We
say that a function u is even if it is symmetric with respect to the hyperplane Rn × {0}, that is,
u(x′, y) = u(x′,−y). The function spaces that we will consider are the following

Hβ(Ω) ∶= {u ∈H1(β,Ω) ∶ u is even and non-negative}

and
Hβ

loc(Ω) ∶= {u ∈ L2
loc(Ω) ∶ u ∈ Hβ(B) for every ball B ⊂⊂ Ω}.

We will omit Ω in the notation when it is clear from the context.

Definition 2.1. We say that a function u ∈ Hβ
loc(Ω) is a (local) minimizer of J in a domain Ω

if for every ball B ⊂⊂ Ω and for every function v ∈ Hβ(B) such that the traces v∣∂B ≡ u∣∂B, the
inequality

J (u,B) ≤ J (v,B)
holds.

As usual for several free boundary problems, it is a natural question to exhibit a particular
(global) solution so that one gets an idea of the qualitative properties of general solutions. Let us
consider the following function: for every x ∈ Rn let

fn,α(x) ∶= cn,α(xn)α+ ,

where a+ = max{0, a}. If n = 1, f1,α is a solution to (1.2) for a convenient choice of c1,α (see
[BV16, Theorem 3.1.4]). In fact one can see that the same is true for n ≥ 1 using Fubini’s Theorem
conveniently, with

−(−∆)αfn,α(x) = cn,α(xn)−α− , (2.1)

where a− = max{0,−a}.
As a toy question we wonder whether the trivial solutions are minimizers. Indeed, this is the

case, as we will see later in Section 4.1.

Proposition 2.2. Let n ∈ N and 0 < α < 1. Then the trivial solution un,α ∶= fn,α∗Py is a minimizer
of J in every ball B ⊂ Rn+1.

Next we collect the main properties of minimizers in the unit ball proven in [CRS10b, Theorems
1.1-1.4, Proposition 3.3 and Corollary 3.4].

Theorem 2.3. If u ∈ Hβ(B1) is a minimizer of J in Ω = B1 with ∥u∥Ḣβ(B1) ∶= ∥∇u∥L2(B1,∣y∣β) ≤ E0

and x0 ∈ F (u) ∩B 1
2
, then it satisfies

P1: Optimal regularity (see [CRS10b, Theorem 1.1]): ∥u∥Ċα(B1/2) ≤ C(1 +E0).

P2: Nondegeneracy (see [CRS10b, Theorem 1.2]): u(x) ≥ Cdist(x,F (u))α for x ∈ B′
1
2 ,+

.

P3: Interior corkscrew condition (see [CRS10b, Proposition 3.3]): there exists x+ ∈ B′
r(x0) so that

B′(x+,C0r) ⊂ Ω′
+(u).

P4: Positive density (see [CRS10b, Theorem 1.3]): ∣Ω0 ∩B′
r(x0)∣ ≳ rn.

P5: Blow-ups are minimizers (see [CRS10b, Corollary 3.4]): The limit of a blow-up sequence

uk(x) ∶= u(x0+ρkx)
ρα
k

converging weakly in H1(β,B1) and uniformly is a global minimizer.
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P6: Normal behavior at the free boundary (see [CRS10b, Theorem 1.4]): the boundary condition
in (1.2) is satisfied at every point on the free boundary with a measure theoretic normal (see
[EG15]) for a prescribed value of A.

All the constants depend on n and α; and also on E0 except for the ones in P1 and P2.

A major tool in the present paper is an ε−regularity result, i.e. in the language of free boundaries
a statement of the type “flatness implies smoothness”. In [DSS14], the authors proved such an
ε-regularity result for viscosity solutions to the overdetermined system associated to minimizers of
J . Here we establish that all local minimizers are in fact viscosity solutions. While this verification
may be standard for experts in the field, we include it here for the sake of completeness.

Theorem 2.4 (ε-regularity). There exists ε > 0 depending only on n, α and E0 such that for every
non-negative, even minimizer u of the energy (1.1) on a ball B ⊂ Rn+1 with ∥u∥Hβ(B) ≤ E0r(B)n2
and

{(x,0) ∈ B ∶ xn ≤ −ε} ⊂ B0(u) ⊂ {(x,0) ∈ B ∶ xn ≤ ε}, (2.2)

we have that F (u) ∈ C1,γ
loc (

1
2
B), with 0 < γ < 1.

Note that the dependence on E0 will be removed in Section 7.

Proof. We say that u is a viscosity solution to

⎧⎪⎪⎨⎪⎪⎩

∇ ⋅ (∣y∣β∇u) = 0 in B+
1 (u),

limt→0+
u(x0+tν(x0),0)

tα
= 1, for (x0,0) ∈ F (u),

(2.3)

if

i) u ∈ C(B1), u ≥ 0,

ii) u ∈ C1,1
loc (B1,+(u)), u is even and it solves ∇ ⋅ (∣y∣β∇u) = 0 in the viscosity sense, and

iii) any strict comparison subsolution (resp. supersolution) cannot touch from below (resp. from
above) at a point (x0,0) ∈ F (u).

We claim that

every non-negative even minimizer is a viscosity solution. (2.4)

Conditions (i) and (ii) have been verified in [DSS14, Vit18]. To verify our claim it suffices to
prove condition (iii) above: that any strict comparison subsolution cannot touch u from below at
a point (x0,0) ∈ F (u). The analogous claim for strict comparison supersolutions will follow in the
same way.

Let us recall (see, e.g. Definition 2.2 in [DSS14]), that w ∈ C(B1) is a strict comparison
subsolution (resp. supersolution) to (2.3) if

a) w ≥ 0,

b) w is even with respect to {y = 0},

c) w ∈ C2({w > 0}),

d) div (∣z∣β∇w) ≥ 0 in B1/{y = 0},
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e) F (w) is locally given by the graph of a C2 function and for any x0 ∈ F (w) we may write

w(x, y) = aU((x − x0) ⋅ ν(x0), y) + o(∥(x − x0, y)∥α), (x, y)→ (x0,0). (2.5)

Here U is the extension of the trivial solution (see [DSS14]), ν(x0) is the unit normal to F (w)
considered as a subset of Rn pointing into {w > 0} and a ≥ 1.

f) Furthermore, either the inequality is strict in d), or a > 1 in e).

So assume that w ≥ u where w is a strict comparison subsolution and u is some minimizer and
that w = u at (x0,0) ∈ F (u). Since u(x0,0) = 0 it follows that (x0,0) ∈ F (w) and with a harmless
rotation we can guarantee that ν((x0,0)) = en. We want to show that en is also the measure
theoretic unit normal to F (u). Indeed, since F (w) is C2 there must exist a ball B ⊂ {w > 0}
which is tangent to F (w) at (x0,0). It must then be that case that B ⊂ {u > 0} as well. Thus
(x0,0) ∈ F (u) has a tangent ball from the inside which, by [CRS10b] Proposition 4.5 implies that
u has the asymptotic expansion

u(x, y) = U((x − x0) ⋅ ν(x0), y) + o(∥(x − x0, y)∥α), (x, y)→ (x0,0).

If u ≥ w this implies that w must satisfy the expansion in (2.5) with a = 1 at the point
x0. This, in turn, implies that div (∣z∣β∇w) > 0 in B1/{y = 0} (by the definition of a strict

subsolution). Furthermore, since w ∈ C2 where {w > 0} we can guarantee that div (∣z∣β∇w) ≥ 0 in
all of B1 ∩ {w > 0}.

Let us return to the ball B which is a subset of {u > 0} and {w > 0} and for which (x0,0) ∈ B.
We know that w−u ≠ 0 in B ∖{y = 0} (this is because w strictly satisfies the differential inequality
in B away from {y = 0}) and we know that w −u is a subsolution in B. Furthermore (x0,0) ∈ B is
a strict maximum, so by the Hopf lemma in [CS14, Proposition 4.11] it must be that

lim
t↓0+

(w − u)(x0 + tν(x0),0)
tα

> 0.

This contradicts the fact u and w both satisfy (2.5) at (x0,0) with a = 1. Therefore, (x0,0) must
not have been a touching point and u is indeed a viscosity solution.

Since, u is a viscosity solution, [DSS14, Theorem 1.1] applies and we get the desired ε-regularity.

3 Compactness of minimizers

In this section we prove important results on the compactness of minimizers. As we mentioned
above, our contribution is that convergent sequences of minimizers also converge in the relevant
weighted Sobolev spaces strongly rather than just weakly. This will prove essential to the com-
pactness arguments used in the later sections of this paper.

3.1 Caccioppoli Inequality

First we want to show that the distribution λ ∶= ∇ ⋅ (∣y∣β∇u) is in fact a Radon measure with
support in the complement of the positive phase as long as u is a minimizer. In Section 7 we will
come back to this measure to understand its behavior around the free boundary.

Lemma 3.1. Let Ω ⊂ Rn+1 be an open set, and let u ∈W 1,2
loc (Ω, ∣y∣β) be such that ∇ ⋅ (∣y∣β∇u) = 0

weakly in Ω+(u), i.e., for every η ∈ C∞
c (Ω+(u)),

⟨∇ ⋅ (∣y∣β∇u), η⟩ ∶= −
ˆ

(∣y∣β∇u)∇η = 0. (3.1)

9



Then λ ∶= ∇ ⋅ (∣y∣β∇u) is a positive Radon measure supported on {u = 0} and for every v ∈
W 1,2(Ω, ∣y∣β) ∩Cc(Ω) ˆ

v dλ = −
ˆ

∣y∣β∇u ⋅ ∇v. (3.2)

Proof. Indeed, by (3.1) the quantity

−
ˆ

∣y∣β∇u ⋅ ∇ζ = −
ˆ

∣y∣β∇u ⋅ ∇(ζmax{min{2 − u
ε
,1} ,0}) ≥ −

ˆ
Ω∩{0<u<2ε}

∣y∣β ∣∇u∣∣∇ζ ∣ ε→0ÐÐ→ 0

defines a positive functional on positive ζ ∈ C0,1
c (Ω). Moreover, for compact K ⊂ Ω, consider a

Lipschitz function fK such that χK ≤ fK ≤ χΩ. If ζ ∈ C0,1
c (K), by the positivity shown above we

obtain

−
ˆ

∣y∣β∇u ⋅ ∇ζ ≤ −∥ζ∥L∞
ˆ

∣y∣β∇u ⋅ ∇fK ≤ CK,u∥ζ∥L∞

and, by Hahn-Banach’s theorem, we can extend the functional to a positive functional in Cc(Ω),
that is given by integration against a positive Radon measure by the Riesz representation theorem.

The fact that (3.2) holds for all functions in W 1,2(Ω, ∣y∣β)∩Cc(Ω) follows by a standard density
argument.

The Caccioppoli inequality is the first step to proving convergence in a Sobolev sense. It will
also be useful when we remove the a priori dependence of our results on the Sobolev norm of the
minimizer.

Lemma 3.2 (Caccioppoli Inequality). Let B ⊂ Rn+1 be a ball of radius r centered on Rn × {0},
and let u ∈W 1,2(B, ∣y∣β) be such that ∇ ⋅ (∣y∣β∇u) = 0 weakly in B ∩ {u > 0}. Then

ˆ
1
2B

∣y∣β ∣∇u∣2 ≤ 4

r2

ˆ
B∖ 1

2B

∣y∣βu2.

Proof. Let η be a Lipschitz function such that χ 1
2B

≤ η ≤ χB and with ∣∇η∣ ≤ 1
r
. By Lemma 3.1

0 =
ˆ
B

uη2dλ =
ˆ
B

∣y∣β∇u ⋅ ∇(uη2).

By the Leibniz rule ˆ
B

∣y∣βη2∣∇u∣2 = −
ˆ
B

∣y∣β2uη∇u ⋅ ∇η,

and using Hölder’s inequality we get

ˆ
1
2B

∣y∣β ∣∇u∣2 ≤
ˆ
B

∣y∣βη2∣∇u∣2 ≤
ˆ
B

∣y∣β4u2∣∇η∣2 ≤ 4

r2

ˆ
B∖ 1

2B

∣y∣βu2.

Lemma 3.3. Let u ∈ Hβ(Br) be a minimizer of J in B2r and 0 ∈ F (u). Then

r−n/2∥∇u∥L2( 12Br;∣y∣β) ≤ r
−α∥u∥L∞(Br) ≤ ∥u∥Ċα(Br)≤ C (1 + r−n/2∥∇u∥L2(B2r;∣y∣β)).

Proof. The first inequality is an immediate consequence of Caccioppoli, the middle estimate is
trivial and the last follows from P1 in Theorem 2.3.
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3.2 Compactness

In the following lemma we prove the compactness of minimizers in the relevant Sobolev spaces.
For convenience, we also detail several compactness results which were either already proven in
[CRS10b] or are standard consequences of the non-degeneracy estimates in Theorem 2.3. Never-
theless, we include full proofs here for the sake of completeness. We note here (as we did above
and will do again below) that while we currently need to assume the uniform bound on the Hölder
norm of the functions uk we can get rid of this assumption in the light of the results of Section 7.

Lemma 3.4 (Compactness results). Let {uk}∞k=1 ⊂ Hβ
loc(Ω) be a sequence of minimizers in a do-

main Ω ⊂ Rn+1 with ∥uk∥Ċα(Ω) ≤ E0 with non-empty free boundary. Then there exists a subsequence

converging to some u0 ∈ Hβ
loc(Ω) such that for every bounded open set G ⊂⊂ Ω we have

1. uk → u0 in Cβ(G) for every β < α,

2. uk → u0 in Lp(G) for every p ≤∞,

3. ∂{uk > 0} ∩ Ḡ→ ∂{u0 > 0} ∩ Ḡ in the Hausdorff distance,

4. χ{uk>0} → χ{u0>0} in L1(G′), and

5. ∇uk → ∇u0 in Lp(G; ∣y∣β) for every p ≤ 2.

Proof. The first claim follows from uniform Hölder continuity and compact embeddings of Hölder
spaces. The claim (2) follows from (1) easily.

We now prove the third claim. Let ε > 0. We will first show that for x ∈ Rn×{0} we have

d(x,F (u0)) > ε⇒ d(x,F (uk)) >
ε

2
(3.3)

for large k. This implies that F (uk) ⊂ {x∶ d(F (u0), x) < 2ε} for k large enough.
Let B(x, ε) ⊂ F (u0)c. If u0 is positive in B(x, ε) then it is bounded from below by a positive

number in B(x, ε/2). In this case uk are also positive in B(x, ε/2) for large k due to uniform
convergence in G. Thus B(x, ε/2) ⊂ F (uk)c for large k. If u ≡ 0 in B′(x, ε) then due to the uniform
convergence we know that for k large enough uk < Cεα in B′(x, ε), where C is a constant given by
P2 in Theorem 2.3 so that uk has no free boundary points in B(x, ε/2) for all large k. This proves
(3.3).

Next we will show that for all large k

F (u0) ⊂ {x∶ d(F (uk), x) < ε}. (3.4)

If this was not true we could find a point x ∈ F (u0) and a subsequence of uk such that B′(x, ε) ⊂
F (uk)c for every k in the subsequence. If the subsequence contains infinitely many uk such that
uk ≡ 0 in B(x, ε) then also u0 ≡ 0 due to uniform convergence. Otherwise, the sequence contains
infinitely many uk for which B(x, ε) is contained in the positive phase. In this case the non-
degeneracy implies that in B(x, ε/2) we have uk > Cεα, with C independent of k. Again uniform
convergence implies the same lower bound for u0, which contradicts our choice x ∈ F (u0).

To show the fourth claim we notice that F (u0) has zero n-dimensional Lebesgue measure by the
Lebesgue differentiation Theorem and the positive density of the zero phase. Take an open set V ⊃
F (u0) with m(V ∩G′) < ε. For large k we have F (uk)∪F (u0) ⊂ V ∩G′, so ∥χ{uk>0} − χ{u0>0}∥L1(G′) <
ε.

Also the sequence is uniformly bounded in H1,p(G; ∣y∣β) by the Caccioppoli inequality. This
implies by compactness [HKM06, 1.31 Theorem] the weak convergence of ∇uk in Lp(G; ∣y∣β). To
obtain strong convergence, use Lemma 3.5 below.
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It remains to show that weak convergence implies strong convergence.

Lemma 3.5. Any sequence of minimizers {uk}∞k=0 in Ω ⊂ Rn+1 with uk → u0 uniformly and
∇uk ⇀ ∇u0 weakly in L2

loc(Ω, ∣y∣β) satisfies that ∇uk → ∇u0 in L2
loc(Ω, ∣y∣β).

Proof. Let η ∈ C0,1
c (Ω) be a non-negative function. We claim that for every ε > 0 there exists j0 so

that ˆ
∣y∣βη∣∇u −∇uj ∣2 ≤ ε

for j ≥ j0.
First we isolate the main difficultyˆ

∣y∣βη∣∇u0 −∇uj ∣2 =
ˆ

∣y∣βη(∇u0 −∇uj) ⋅ ∇u0 −
ˆ

∣y∣βη(∇u0 −∇uj) ⋅ ∇uj .

By weak convergence,

∣
ˆ

∣y∣βη(∇u0 −∇uj) ⋅ ∇u0∣ ≤ ε/4

for j big enough. Note that this is true even if the uj are not minimizers. The bound on the second
term, however, needs the minimization property.

We observe thatˆ
∣y∣βη(∇u0 −∇uj) ⋅ ∇uj =

ˆ
∣y∣β(∇u0 −∇uj) ⋅ ∇(ηuj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶I

−
ˆ

∣y∣βuj(∇u0 −∇uj) ⋅ ∇η
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶II

. (3.5)

To estimate I in (3.5), let λj be the measures corresponding to uj from Lemma 3.1. By (3.2)
we get that ˆ

∣y∣β(∇u0 −∇uj) ⋅ ∇(ηuj) =
ˆ
ηuj dλ0 −

ˆ
ηuj dλj .

Since λj is supported on {uj = 0} we have thatˆ
ηuj dλj = 0

for every j (including j = 0 as u0 is also a minimizer to J , see Corollary 3.4 in [CRS10b]).
To finish the estimate on I in (3.5) we observe thatˆ

ηuj dλ0 =
ˆ
η(uj − u0)dλ0 ≤ sup

supp η
∣uj − u0∣

ˆ
η dλ0.

By uniform convergence on compact subsets, for j big enough, supsupp η ∣uj − u0∣ ≤ ε
4∥η∥L1(λ0)

.

We turn towards estimating II in (3.5):

∣II ∣ = ∣
ˆ

∣y∣βuj(∇u0 −∇uj) ⋅ ∇η∣ ≤ ∣
ˆ

∣y∣β(∇u0 −∇uj) ⋅ (u0∇η)∣

+ sup
supp η

∣uj − u0∣∥∇u0 −∇uj∥L2(Ω,∣y∣β)∥∇η∥L2(Ω,∣y∣β). (3.6)

The first term goes to zero by weak convergence of ∇uj to ∇u0. The second term satisfies

sup
suppη

∣uj − u0∣∥∇u0 −∇uj∥L2(suppη,∣y∣β)∥∇η∥L2(Ω,∣y∣β) ≤ ε/4

for j big enough, by uniform convergence and the uniform bound of ∥∇uj∥L2(supp η,∣y∣β) derived

from the Caccioppoli inequality in Lemma 3.2 together with uniform convergence.
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Lemma 3.4 implies that minimizers converge to minimizers (which was observed in Corollary
3.4 in [CRS10b]), but also implies the stronger fact that the energy is continuous under this
convergence:

Corollary 3.6. Let uk be a sequence of minimizers in Ω ⊂ Rn+1 with uk → u0 locally uniformly
and supk ∥uk∥Hβ < ∞. Then u0 is also a minimizer to J in Ω and for any B ⊂⊂ Ω we have
J (uk,B)→ J (u0,B) after passing to a subsequence .

4 Monotonicity formula and some immediate consequences

From [All12] we have the following monotonicity formula:

Theorem 4.1 (Monotonicity formula, see [All12, Theorem 4.3] ). Let u ∈ Hβ(Bδ(x0)) be a
minimizer in Bδ(x0) for the functional J with x0 ∈ F (u). Then the function

r ↦ Ψu
r (x) ∶= Ψ(r) = J (u,Br(x0))

rn
− α

rn+1

ˆ
∂Br(x0)

∣y∣βu2 dHn

is defined and nondecreasing in (0, δ), and for 0 < ρ < σ < δ, it satisfies

Ψ(σ) −Ψ(ρ) =
ˆ
Bσ(x0)∖Bρ(x0)

∣y∣β 2 ∣αu(x) − (x − x0) ⋅ ∇u(x)∣2

∣x0 − x∣n+2
dx ≥ 0.

As a consequence, the blow-up limits are cones, in the sense of the following corollary.

Corollary 4.2. Let u ∈ Hβ(Bδ(x0)) be a minimizer in Bδ(x0) with x0 = (x′0,0). Consider a

decreasing sequence 0 < ρk
k→∞ÐÐÐ→ 0 and the associated rescalings uk(x) ∶= u(x0+ρkx)

rα
. Then the

Allen-Weiss density
Ψu

0(x0) ∶= lim
r↘0

Ψu
r (x0)

is well defined. Furthermore, for every bounded open set D ⊂ Rn+1 and k ≥ k(D) this subsequence
uk is bounded in H1,2(D; ∣y∣β) and, passing to a subsequence ukj , converges (in the sense of Lemma
3.4) to u0 which is a globally defined minimizer of J that is homogeneous of degree α.

The proof is the same as in [Wei99, Theorem 2.8]

Remark 4.3 (Non-uniqueness of blow-ups). We call the function u0 appearing in Corollary 4.2
a blow-up of u at x0. A priori, the function u0 may depend on the subsequence ukj . However, a
simple scaling argument shows that for all radii r ≥ 0 and all blow-ups u0 to u at x0 we have

Ψu0
r (0) ≡ Ψu

0(x0).

4.1 Dimension reduction

We use the homogeneity of the blow-ups to obtain dimension estimates on the points in the
free boundary for which there exists a non-flat blow-up. This process is known as “dimension
reduction” and has been applied to a variety of situations (see [Wei99] for its application to the
Bernoulli problem).

The first lemma shows that blow-up limits of blow-up limits have additional symmetry:

Lemma 4.4. Let u ∈ Hβ
loc(Rn+1) be an α-homogeneous minimizer of J and let x0 ∈ F (u) ∖ {0}.

Then any blow-up limit u0 at x0 is invariant in the direction of x0, i.e., for every x ∈ Rn+1 and
every λ ∈ R,

u0(x + λx0) = u0(x).
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Proof. Let x ∈ Rn+1, and consider its decomposition x = x̃ + λx0 with x̃ ∈ ⟨x0⟩�. We only need to
check that

u0(x) = u0(x̃). (4.1)

Bρk(x0)
P1

P2P3

O
x0

Figure 4.1: The distance dist(P1, P3) = O(ρ2
k).

Consider a ball B = B(0, r) ⊂ Rn+1 so that x̃, x ∈ B. Let {ρk} be a sequence of radii converging

to zero and such that uk(x) ∶= u(x0+ρkx)
ρα
k

converges to u0 uniformly on Br. For k big enough,

∥uk − u0∥L∞(Br) < ε. Then,

∣u0(x) − u0(x̃)∣ ≤ 2ε + ∣uk(x) − uk(x̃)∣. (4.2)

To control the last term above, we use the homogeneity of u. Writing P1 ∶= x0 + ρkx̃ and
P2 ∶= x0 + ρkx we have ραkuk(x̃) = u(P1) and ραkuk(x) = u(P2). Let P3 be the intersection between
the line through P1 and x0 and the line through the origin and P2 (see Figure 4.1). By homogeneity
of u

u(P2) = u(P3)(
∣P2∣
∣P3∣

)
α

= u(P3)(1 ± ∣P2 − P3∣
∣P3∣

)
α

.

Thus,

ραk ∣uk(x) − uk(x̃)∣ ≤ ∣u(P1) − u(P3) (1 +O(ρk))α∣ ≤ ∣u(P1) − u(P3)∣ + ∣u(P3)∣O(ρk).

By Thales’ Theorem, ∣P1−P3∣ = ∣P1−P2∣∣P3−x0∣
∣x0∣ = O(ρ2

k) and using the Ċα character of u and the fact

that u(x0) = 0, we get

ραk ∣uk(x) − uk(x̃)∣ ≤ ∥u∥Ċα (∣P1 − P3∣α + ∣P3∣αO(ρk)) = O(ρ2α
k ) +O(ρk),

and (4.1) follows by (4.2) since ρk → 0.

We then recall that a minimizer with a translational symmetry is actually a minimizer without
that symmetry in one dimension less. This is known as “cone splitting”:

Lemma 4.5. Let u ∈ Hβ
loc(Rn+1) be an α-homogeneous minimizer of J in Rn+1 which is invariant

in the direction en. Then ũ(x′, y) ∶= u(x′,0, y) is a minimizer of J in one dimension less.

Proof. The proof is a slight variation of [Wei99, Proof of Lemma 3.2].

Next we provide a non-standard proof of Proposition 2.2, that is, to show that the trivial
solution is a minimizer. We use P5 in a sequence of conveniently chosen blow-ups and a dimension
reduction argument, based on the following lemma. Note that the proposition could also be proven
via a classical dimension reduction argument.
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Proof of Proposition 2.2. Consider a non-zero minimizer u with non-empty free boundary (see
[CRS10b, Proposition 3.2] for its existence), choose a free boundary point x0 ∈ F (u) and consider
u0 to be a blow-up weak limit at this point, which exists and is α-homogeneous by Lemma 4.2.
Then u0 is also a global minimizer by P5 and not null by the nondegeneracy condition.

Next we argue by induction: given 0 ≤ j ≤ n − 2 let uj be an α-homogeneous global minimizer
different from 0 such that it is invariant in a j-dimensional linear subspace Hj ⊂ Rn, i.e., for every
v ∈Hj and every x′ ∈ Rn,

uj(x′, y) = u(x′ + v, y).
Consider a point xj ∈ F (uj)∖(Hj×{0}) which exists as long as j < n−1 by the interior corkscrew

condition and positive density, and let uj+1 be a blow-up limit at this point, which is again an
α-homogeneous global minimizer. We claim that uj+1 is invariant in fact in the (j+1)-dimensional
subspace Hj + ⟨x′j⟩.

Indeed uj+1 is invariant in ⟨x′j⟩ by Lemma 4.4. On the other hand, since uj is invariant in Hj ,
so are the functions in the blow-up sequence and, thus, uj+1 is invariant in Hj . Thus, for v ∈ Hj ,
v0 ∈ ⟨x′j⟩ and x ∈ Rn+1 we get

u(x + v + x′j) = u(x + v) = u(x),

and the claim follows.
Thus, after n − 1 steps, we obtain un−1 which is an α-homogeneous global minimizer invariant

in an (n − 1)-dimensional space Hn−1, with non-empty free boundary. Thus,

un−1(x′,0) = Cn,α(x′n)α+ ,

where the constant is given by P6. The proposition follows by Proposition A.1.

4.2 Upper semicontinuity

Next we show that Allen-Weiss’ energy at a fixed radius is continuous both with respect to the
minimizer and with respect to the point:

Lemma 4.6. Let uj ∈ Hβ
loc(Ω) be minimizers of J in Ω and uj → u0 in the sense of Lemma 3.4.

Then, for xj → x0 and r < dist(x0, ∂Ω),

Ψuj
r (xj)

j→∞ÐÐÐ→ Ψu0
r (x0).

Proof. Let ε > 0. We want to check that for j big enough,

∣Ψuj
r (xj) −Ψu0

r (x0)∣ ≤ ε.

We will consider the three terms of the energy separately. For the first term,ˆ
Br(xj)

∣y∣β ∣∇uj ∣2 −
ˆ
Br(x0)

∣y∣β ∣∇u0∣2 ≤ rnε/3

follows from the L2 convergence of the gradients. Indeed, if δj ∶= ∣xj − x0∣ ≤ δ for j big enough and
Br+δ ⊂ Ω, thenˆ
Br(xj)

∣y∣β ∣∇uj ∣2 −
ˆ
Br(x0)

∣y∣β ∣∇u0∣2 ≤
ˆ
Br(xj)

∣y∣β (∣∇uj ∣2 − ∣∇u0∣2) +
ˆ
Br(xj)∆Br(x0)

∣y∣β ∣∇u0∣2

≤
ˆ
Br+δ(xj)

∣y∣β (∣∇uj ∣2 − ∣∇u0∣2) +
ˆ
(Br+δj∖Br−δj )(x0)

∣y∣β ∣∇u0∣2

≤ rnε/3.
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For the measure, we estimate

∣
ˆ
Br(xj)′

χΩ+(uj)dm −
ˆ
Br(x0)′

χΩ+(u0)dm∣ ≤ rnε/3

for j big enough as a consequence of χΩ+(uj) → χΩ+(u0) in L1
loc as before. The fact that

α ∣
ˆ
∂Br(xj)

u2
j −

ˆ
∂Br(x0)

u2
0∣ ≤ rn+1ε/3

for j big enough is a straight consequence of the uniform convergence and the continuity of u0.

It is well known that the limit of a decreasing sequence of continuous functions is upper semi-
continuous (see [Dal12, Theorem 1.8]). The monotonicity formula also implies the following result.

Lemma 4.7. Let uj ∈ Hβ
loc(Ω) be minimizers of J in Ω and uj

j→∞ÐÐÐ→ u0 in the sense of Lemma
3.4, with xj ∈ F (uj) for j ∈ N. Then, if xj → x0 and rj → 0,

lim sup
j

Ψ
uj
0 (xj) ≤ lim sup

j
Ψuj
rj (xj) ≤ Ψu

0(x0).

Proof. The first inequality comes from monotonicity.
To see that

lim sup
j

Ψuj
rj (xj) ≤ Ψu0

0 (x0),

it is enough to check that for every r > 0

lim sup
j

Ψuj
rj (xj) ≤ Ψu0

r (x0),

or using monotonicity it suffices to show that for every ε > 0 and j big enough,

Ψuj
r (xj) −Ψu0

r (x0) ≤ ε.

But this is true for j big enough because the left-hand side converges to 0 by the continuity of the
energy from Lemma 4.6.

5 Measure-theoretic properties

5.1 Finite perimeter

We will show that Ω′
+(u) is a set of locally finite perimeter. Then Fred(u) will coincide with the

measure-theoretic reduced boundary by the ε-regularity theorem, see [AC81, Sections 4.6 and 4.7].

Definition 5.1. For every 0 < α < 1 we can define

k∗α ∶= inf {k ∈ N ∶ ∃ an α-homogeneous minimizer u ∈ Hβ
loc(Rk+1) such that Σ(u) = {0}} .

Note that, to the best of our knowledge, there is no result showing that k∗α needs to be finite.

Lemma 5.2. Let u be an α-homogeneous minimizer of J in Rn+1 with n < k∗α. Then u is a
rotation of the trivial solution.
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See [Wei99, Section 3] for the proof.
From the positive density properties, we know that k∗α ≥ 2. From the homogeneity of the blow-

ups we find out that the free boundary in R1+1 is in fact a collection of isolated points. Later in
Theorem 6.1 we will show that in fact k∗α ≥ 3.

Lemma 5.3 (Isolated singularities). Let u ∈ Hβ
loc(Ω) for Ω ⊂ R1+1 be a minimizer of J in Ω.

Then F (u) has no accumulation points in Ω.

Proof. Arguing by contradiction, we assume that F (u) has an interior accumulation point which,
without loss of generality, we assume to be the origin.

Let (xk,0) be a sequence of singular points converging to 0 with xk > 0. Consider the blow-up

rescaling uk(x) ∶= u(xkx)
xα
k

. Note that uk(0,0) = uk(1,0) = 0. Moreover, by the interior corkscrew

condition, there exist zk ∈ (1/2,3/2) such that uk ∣B′
c(zk,0) > 0, so u(zk,0) ≳ C by the non-degeneracy

condition.
Choosing a subsequence, we may assume that zk → z0 ≥ 1/2, and uk → u0 in the sense of Lemma

3.4. In particular u0 is homogeneous by Corollary 4.2, reaching a contradiction with the fact that
u0(1,0) = 0 and u0(z0,0) ≳ C.

We will prove the local finiteness of the perimeter of the free boundary adapting a proof of
De Silva and Savin in [DS15]. Our proof is essentially the same, but we repeat it for the sake of
completeness.

As in [DS15] we say that a set A ⊂ Rn satisfies the property (Pt ) if the following holds: for
every x ∈ A there exists an rx > 0 such that for every 0 < r < rx, every subset S of B(x, r) ∩A can
be covered with a finite number of balls B(xi, ri) with xi ∈ S such that

∑
i

ri ≤ rt/2. (5.1)

Lemma 5.4. If Ht(Σ(U)) = 0 for every minimal cone U in Rn+1 then Ht(Σ(u)) = 0 for every
minimizer u of J defined on Ω ⊂ Rn+1

Proof. We first show that Σ(u) satisfies the property (Pt ). If (Pt ) does not hold we find a point
y ∈ Σ(u) for (Pt ) is violated for a sequence rk → 0. We consider the blow-up sequence

urk(x) = r−αk u(y + rkx). (5.2)

By Corollary 3.6 we may assume, by taking a subsequence, that urk converges to a minimal cone
U . By our assumptions we may cover Σ(U)∩B(0,1) with a finite collection of balls {B(xi, ρi10

)}ki=1

with

∑
i

ρti ≤
1

2
.

By Lemma 3.4 we know that free boundaries converge in Hausdorff sense and thus the set
F (urk)∩B(0,1)∖⋃iB(xi, ρi/5) is flat for all large k. From Theorem 2.4 we infer that all singularities
must be covered by the same balls, that is, for all k ≥ k0

Σ(urk) ∩B(0,1) ⊂⋃
i

B(xi, ρi/5). (5.3)

After rescaling we see that u satisfies the condition for property (Pt ) in the ball B(y, rk), which
is a contradiction. Therefore the property (Pt ) holds as claimed.

Consider the set Dk ∶= {y ∈ Σ(u) ∶ ry ≥ 1/k}. Fix a point y0 ∈ Dk. By property (Pt ) applied to
r0 = 1/k we find a finite cover of Dk ∩B(y0, r0) with balls B(yi, ri), yi ∈Dk, satisfying

∑
i

rti ≤ rt0/2.
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Similarly, for each ball B(yi, ri) in the cover we use the property (Pt ) to find a finite number of
balls B(yij , rij), yij ∈Dk, which cover Dk ∩B(yi, ri) and satisfy

∑
j

rtij ≤ rti/2,

and thus ∑i,j rij ≤ rt0/4. By repeating the argument N times we obtain a cover of Dk ∩B(y0, r0)
by balls B(zl, rl) which satisfies

∑
l

rtl ≤ 2−Nrt0.

This implies that Ht(B(y0, r0) ∩Dk) = 0 and thus Ht(Dk) = 0. By countable additivity we obtain
the claim.

Lemma 5.5. If Ht(Σ(U)) = 0 for some t > 0 and for every minimal cone in Rn+1, we then have
that Ht+1(Σ(V )) = 0 for every minimal cone V in R(n+1)+1.

Proof. Without loss of generality we may assume Σ(V ) ≠ {0}. Let x ∈ Σ(V )∖{0}. By Corollary 3.6
the blow-ups at any point of Σ(V )∩∂B converge to a minimal cone in dimension (n+1)+1 up to a
subsequence. Let Vx be a blow-up at x. By Lemma 4.5 Vx is a minimal cone which is invariant in at
least one direction. By Lemma 4.5, using our assumption this implies that Ht+1(Σ(Vx)) = 0, and
thus the singular set of every possible blow-up cone of any minimizer V has zero Ht+1-measure.

Arguing as in Lemma 5.4 we obtain Ht+1(Σ(V )) = 0.

Combining Lemmas 5.3, 5.4 and 5.5 we obtain the following corollary. Notice that we will be
able to replace n − 1 by n − 2 by Theorem 6.1.

Corollary 5.6. Every minimizer satisfies

Hn−1(Σ(u)) = 0.

Lemma 5.7. Let u ∈ Hβ(2B) be a minimizer of J in 2B with ∥u∥Ċα(2B) < E0. Then there exists

a constant C depending on n, α and E0 and a finite collection of balls {B(Xi, ri)} s.t.

Hn−1 ((F (u) ∩B) ∖
m

⋂
i=1

B(Xi, ri)) ≤ C (5.4)

and
m

∑
i=1

rn−1
i ≤ 1

2
. (5.5)

Proof. Proof is by contradiction. For k ∈ N assume we have ∥uk∥Ċα(2B) < E0 and the left-hand

side of (5.4) is bounded below by k > 0 for every collection of balls satisfying (5.5). By Lemma
3.2 we know the sequence uk is bounded in Hβ(B). Taking a subsequence we may assume that uk
converges locally uniformly to a minimizer u (see Corollary 3.6).

By Corollary 5.6 the set of singularities Σ(u) has Hn−1 -measure zero and thus they can be
covered with finitely many balls Bi satisfying (5.5).

Since F (u) ∖ Σ(u) is a C1,γ-surface by Theorem 2.4, using the Hausdorff convergence of the
free boundaries we apply again Theorem 2.4 to see that F (uk)∩B1∖⋃Mi=1Bi are also C1,γ-surfaces
converging to F (u) ∩ B1 ∖ ⋃Mi=1Bi uniformly in the C1-norm. This is a contradiction with the
assumption that the Hausdorff measure blows up as k goes to ∞.
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The fact that the free boundary has finite perimeter follows now from the same iteration
argument as [DS15, Lemma 5.10].

Lemma 5.8. Let u be as in Lemma 5.7. Then for some constant C depending only on E0,

Hn−1 (F (u) ∩B) ≤ C. (5.6)

Proof. By Lemma 5.7 we find a finite collection of balls Bri such that

F (u) ∩B ⊂ Γ ∪⋃Bri , (5.7)

with Hn−1(Γ) ≤ C and ∑ rn−1
i ≤ 1

2
.

Applying Lemma 5.7 again for each ball Bri we have

F (u) ∩Bri ⊂ Γi ∪⋃Brij , (5.8)

with Hn−1(Γi) ≤ Crn−1
i and ∑ rn−1

ij ≤ 1
2
rn−1
i . Moreover, we have

Hn−1 ((F (u) ∩B1) ∩⋃
i,j

Brij) ≤Hn−1(Γ) +∑Hn−1(Γi) ≤ C
⎛
⎝

1 +∑
i,j

rn−1
ij

⎞
⎠
≤ C (1 + 1

2
) .

Continuing inductively, after k steps we have that

F (u) ∩B1 ⊂ Γ′ ∪
N

⋃
q=1

Brq , (5.9)

with

Hn−1(Γ′) ≤ C (
k

∑
i=0

2−i) ≤ 2C,

and ∑ rn−1
q ≤ 2−k. This gives the claim.

Finally the fact that {u > 0} ∪ Ω has locally finite perimeter in Ω follows from the previous
lemma and well-known results of Federer, see for example [AFP00, Prop. 3.62] or [Fed69, 4.5.11].

5.2 Energy gap

Next we will check that the Allen-Weiss density can also be used to identify singular points. First
let us state a useful identity for minimizers (which is also valid in the context of variational solutions
in the sense of [Wei98]).

Lemma 5.9 (See [All12, Proposition 3.4]). Let u ∈ Hβ
loc(Ω) be a minimizer to (1.1) in Ω. For

every B ⊂⊂ Ω we have ˆ
B

∣y∣β ∣∇u∣2 =
ˆ
∂B

∣y∣βu∇u ⋅ ν dHn. (5.10)

Let u be a minimizer and x0 ∈ F (u). If we consider a blow-up u0 at x0, then

Ψu
0(x0) = Ψu0

1 (0) =
ˆ
B1

∣y∣β ∣∇u0∣2 +m({u0 > 0} ∩Rn ∩B1) − α
ˆ
∂B1

∣y∣βu2
0 dHn.

By Lemma 5.9 we get

Ψu0

1 (0) =
ˆ
∂B1(x0)

∣y∣βu0∇u0 ⋅ ν dHn +m({u0 > 0} ∩Rn ∩B1) − α
ˆ
∂B1

∣y∣βu2
0 dHn.
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Since ∇u0(x) ⋅ν(x) = α
∣x∣u0(x) almost everywhere on the sphere, the first and the third terms cancel

out and we obtain
Ψu0

1 (0) =m({u0 > 0} ∩B′
1).

Thus, the density Ψu
0 at a free boundary point is given by the area of the positive phase of any

blow-up at the same point.
We write ωn ∶=m(B′

1) for the volume of the n-dimensional ball.

Proposition 5.10. Every homogeneous minimizer u ∈ Hβ
loc(Rn+1) has density

Ψu
1(0) =m({u > 0} ∩B′

1) ≥
ωn
2
,

and equality is only attained when u is the trivial minimizer.

Proof. Let u be a minimizer such that Ψu
1(0) ≤ ωn

2
.

Let x1 ∈ Fred(u). Being a regular point, Ψu
0(x1) = ωn

2
. On the other hand, by the homogeneity

and the continuity in Lemma 4.6,

lim
r→∞

Ψu
r (x1) = lim

r→∞
Ψu

1(x1/r) = Ψu
1(0) ≤

ωn
2
.

Combining both assertions with the monotonicity of Ψ we get that Ψu
r (x1) ≡ ωn

2
. But using the

second formula in Theorem 4.1, one can see that this is true only whenever Ψ is α-homogeneous
with respect to x1. Thus, u is 1-symmetric and invariant in the direction of ⟨x1⟩.

By Corollary 5.6 Fred(u) has full Hn−1 measure on F (u). Thus, we can find x1, . . . xn−1 ∈
Fred(u) linearly independent. By the previous discussion u is invariant on an (n − 1)-dimensional
affine manifold and, thus, it is the trivial solution.

Corollary 5.11 (Energy Gap). There exists ε > 0 depending only on n and α such that every

minimizer u ∈ Hβ
loc(Ω) and every singular point x0 ∈ Σ(u) satisfy

Ψu
1(x0) −

ωn
2

≥ ε.

Proof. Assume the conclusion to be false. Then there exist uj minimizers in B1 with

Ψ
uj
1 (0) ≤ ωn

2
+ 1/j.

Passing to a subsequence, uj → u0 as in Lemma 3.4. Using Lemma 4.7 we get that

Ψu0

1 (0) = lim
j

Ψ
uj
1 (0) ≤ ωn

2
.

But then u0 is the trivial cone by Proposition 5.10. Since F (uj)→ F (u) in the Hausdorff distance,
using ε-regularity (see Theorem 2.4) we get that uj is the trivial cone for j big enough.

The value ε above depends on the constants and on ∥u∥Ċα in a neighborhood of x0. In Section
7 we will show that ε does not depend on u at all.

20



6 Full regularity in R2+1

In the case of n = 2, we prove full regularity of the free boundary for minimizers of our functional.
Note that this result does not depend on the previous sections except that we use dimension
reduction and blow-ups to deduce regularity of the free boundary.

Theorem 6.1. Let n = 2. Then there is no singular minimal cone. In particular, the free boundary
F (u) of every minimizer u is C1,α everywhere.

Proof. We follow closely the arguments in [DS15, Theorem 5.5], building on [SV13]. The case β = 0
has been considered in [DS15]. The idea is to construct a competitor by a perturbation argument.
We note at this point that the argument is two dimensional in nature and does not generalize to
higher dimensions. Recall the functional under consideration:

J (u,Ω) =
ˆ

Ω

∣y∣β ∣∇u∣2 +m({u > 0} ∩Rn ∩Ω).

Let V be a non trivial minimal cone. Define, as in [DS15], the Lipschitz continuous function

ψR(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, 0 ≤ t ≤ R,
2 − ln(t)

ln(R) , R ≤ t ≤ R2,

0, t ≥ R2

(6.1)

Define now the bi-Lipschitz change of coordinates

Z(x′, y) = (x′, y) + ψR(∣(x′, y)∣)e1

and set V +
R(Z) = V (x′, y). Clearly, one has

D(x′,y)Z = Id +A

where ∥A∥ ≤ ∣ψ′R(∣(x′, y)∣)∣ << 1. Defining now V −
R exactly as V +

R changing ψR into −ψR, the very
same computation as in [DS15] gives

J (V +
R ,BR2) +J (V −

R ,BR2) ≤ 2J (V,BR2) +
ˆ
BR2

∣y∣β ∣∇V ∣2∥A∥2.

Now, we have ˆ
BR2

∣y∣β ∣∇V ∣2∥A∥2 =
ˆ R2

R

ˆ
∂Br

∣y∣β ∣∇V ∣2∥A∥2 dHn dr.

Now since V is homogeneous of degree α by assumption, the function g(x, y) = ∣y∣β ∣∇V ∣2 is homo-
geneous of degree β +2α−2 = −1. Therefore by a trivial change of variables on the sphere of radius
r and using the fact that n = 2, we get the very same estimate

ˆ
BR2

∣y∣β ∣∇U ∣2∥A∥2 ≤ C

ln(R)
R→∞ÐÐÐ→ 0.

The rest of the proof follows verbatim [DS15], page 1318 since this is only based on energy consid-
erations and we refer the reader to it.
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7 Uniform bounds around the free boundary

The optimal regularity bound and the non-degeneracy described in Theorem 2.3 were obtained in
[CRS10b] with bounds that depend on the seminorm ∥u∥Ḣβ(B1). As a consequence, this dependence
propagates to many of our estimates above. In this chapter we use the semi-norm dependent
estimates (e.g. Lemma 5.8) to prove semi-norm independent non-degeneracy estimates. Re-running
the arguments above yields the semi-norm independent results presented in our main Theorem 1.1.

The question of semi-norm independence may seem purely technical; however, independence
allows the compactness arguments of the next section to work without additional assumptions on
the minimizers involved.

7.1 Uniform non-degeneracy

We will begin by showing uniform non-degeneracy from scratch to deduce uniform Hölder character
from this fact, reversing the usual arguments in the literature.

The following lemma was shown in [All12, Corollary 4.2] in a more general setting. Here we
give a more basic approach based on [AC81, Lemma 3.4]. The main difference is that where Alt
and Caffarelli could use the energy to directly control the H1 norm of the minimizer, in our case
we need to find an alternative because the measure term of the functional is computed on the
thin phase (as opposed to the H1 norm which is computed on the whole space). To bypass this
difficulty we will use Allen’s monotonicity formula.

The drawback of our approach is that we need the ball to be centered on the free boundary,
while in the original lemma, Alt and Caffarelli could center the ball in the zero phase, allowing for
a slightly better result.

Lemma 7.1. Let u be a minimizer in Br with 0 ∈ F (u). Then sup∂Br u ≥ Cr
α with C depending

only on n and α.

Proof. By rescaling we can assume that r = 1.
Let Lu ∶= −∇ ⋅ (∣y∣β∇u), consider Γ(x) = 1

∣x∣n−2α which is a solution of LΓ = 0 away from the

origin (or Γ(x) = log ∣x∣ if n = 1 and α = 1/2), and let

ṽ(x) ∶= `max{1 − Γ(2x),0}
1 − Γ(2) ,

where
` ∶= sup

∂B1

u.

It follows that u ≤ ṽ on ∂B1 and thus

J (u,B1) ≤ J (min{u, ṽ},B1),

and observing that ṽ = 0 on B1/2 and ṽ > 0 on the annulus A ∶= B1 ∖B1/2, we get
ˆ
B 1

2

∣y∣β ∣∇u∣2 +m (B′
1
2 ,+

(u)) ≤
ˆ
A

∣y∣β(∣∇(min{u, ṽ})∣2 − ∣∇u∣2) +m(A′
+(min{u, ṽ})) −m(A′

+(u))

≤ −2

ˆ
A

∣y∣β∇max{u − ṽ,0} ⋅ ∇ṽ.

By Green’s theorem, writing dσ = ∣y∣βdHn we getˆ
B 1

2

∣y∣β ∣∇u∣2 +m (B′
1
2 ,+

(u)) ≤ −2

ˆ
∂B 1

2

u∂ν ṽ dσ = Cn,α`
ˆ
∂B 1

2

udσ, (7.1)
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with Cn,α > 0.

Using the monotonicity formula and Proposition 5.10, we get that ψu(r) ≥ ψu(0) ≥ ω(B1)
2

and,
therefore

α

r

ˆ
∂Br

u2 dσ + ω(B1)rd
2

≤ Jr(u), (7.2)

so using Hölder’s inequality and the AM-GM inequality we obtain

ˆ
∂B 1

2

udσ ≤
⎛
⎜
⎝

ˆ
∂B 1

2

u2 dσ
⎞
⎟
⎠

1
2

C
1
2
n,α ≤ 1

2

ˆ
∂B 1

2

u2 dσ + 1

2
Cn,α ≤ Cn,αJ 1

2
(u). (7.3)

Combining (7.1), (7.2) and (7.3) we obtain

0 < J 1
2
(u) ≤ Cn,α`J 1

2
(u),

and therefore ` ≥ C−1
n,α.

To show averaged non-degeneracy we need a mean value principle which is well-known, but we
include its proof for the sake of completeness.

Lemma 7.2 (Mean value principle). Let u ∈H1(β,Ω) be a weak solution to Lu ∶= ∇ ⋅ (∣y∣β∇u) = 0
in Ω, and let x0 ∈ Rn × {0} with Br(x0) ⊂ Ω. Then

u(x0) =
 
Br

udω

where the mean is taken with respect to the measure dω ∶= ∣y∣β dx.

Proof. Changing variables, we have that

A(ρ) ∶= 1

ρβ+n+1

ˆ
Bρ(x0)

∣y∣βu(x)dx =
ˆ
B1

∣y∣βu(ρx + x0)dx.

On the other hand, set

Ã(ρ) ∶=
ˆ
B1

∣y∣β∇u(ρx + x0) ⋅ xdx

=
ˆ
Bρ(x0)

( ∣y∣
ρ

)
β ∇u(x) ⋅ (x − x0)

ρ

dx

ρn+1
= 1

2ρβ+n+2

ˆ
Bρ(x0)

∣y∣β∇u(x) ⋅ ∇∣x − x0∣2 dx.

Since u is a weak solution to ∇ ⋅ (∣y∣β∇u) = 0 in Ω, we can apply Green’s formula twice to obtain

Ã(ρ) = 1

2ρβ+n+2

ˆ
∂Bρ(x0)

∣x − x0∣2∣y∣β∇u(x) ⋅ ν dx =
1

2ρβ+n

ˆ
∂Bρ(x0)

∣y∣β∇u(x) ⋅ ν dx = 0.

Since u is absolutely continuous on lines (see [EG15, Theorem 4.21]), for almost every x we have´ r
ρ
∇u(tx + x0) ⋅ xdt = u(rx + x0) − u(ρx + x0). Applying Fubini’s Theorem we get

ˆ r

ρ

Ã(t)dt =
ˆ
B1

∣y∣β
ˆ r

ρ

∇u(tx + x0) ⋅ xdt dx =
ˆ
B1

∣y∣β(u(rx + x0) − u(ρx + x0))dx = A(r) −A(ρ).
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So A(r) −A(ρ) = 0 for all ρ < r.
On the other hand, taking the mean with respect to the measure dω ∶= ∣y∣β dx and using the

continuity of u (see [FKS82, Theorem 2.3.12]) we obtain

∣u(x0) −
1

ω(B1)
lim
ρ→0

A(ρ)∣ = lim
ρ→0

1

ω(Bρ(x0))
∣
ˆ
Bρ(x0)

(u(x0) − u(x))dω(x)∣ ≤ lim
ρ→0

oρ→0(1) = 0.

Corollary 7.3. Let u be a minimizer in Br with 0 ∈ F (u) and let dσ = ∣y∣βdHn. Then
ffl
∂Br

udσ ≥
Crα with C depending only on n and α.

Proof. Let v be the L−harmonic replacement of u in Br, that is, the solution to

⎧⎪⎪⎨⎪⎪⎩

Lv = 0 in Br,

v ≡ u on ∂Br,
(7.4)

see [HKM06, Theorem 3.17]. After differentiating with respect to the radius, by the mean value
principle we get that v(0) =

ffl
∂Br

udσ. By the comparison principle and the Harnack inequality
we get that

Crα ≤ sup
Br/2

u ≤ sup
Br/2

v ≤ C
 
∂Br

udσ. (7.5)

7.2 Behavior of the distributional fractional Laplacian

Next we use an idea of [AC81] and investigate the behavior of the distributional α-Laplacian of the
minimizer introduced in Section 3. As mentioned in the introduction, in [AC81] this investigation
immediately yields that the positivity set is a set of locally finite perimeter, and more precisely,
that it is Ahlfors regular of the correct dimension. However, the nonlocal nature of this problem
indicates that the distributional fractional Laplacian may not be supported on the free boundary
and thus we cannot expect to immediately gain such strong geometric information.

First we can bound the growth of the fractional Laplacian measure around a free boundary
point. Note that this growth is the natural counterpart to the upper Ahlfors regularity in the case
of Alt-Caffarelli minimizers.

Theorem 7.4. Let u ∈ Hβ(B2r(x0)) be a minimizer of J in B2r(x0), and let x0 ∈ F (u). Then,
we have

λ(Br(x0)) ≤ Crn−α.
In particular λ(F (u)) = 0.

A glance at (2.1) will convince the reader that these estimates are sharp, for they cannot be
improved even in the case of the trivial solution.

Proof. Without loss of generality we may assume that x0 = 0. Let Lu ∶= −∇ ⋅ (∣y∣β∇u) and let v be
the L-harmonic replacement of u in B2r, see (7.4). Write dσ = ∣y∣βdHn and M ∶=

ffl
∂B2r

udσ. By

Harnack’s inequality (see [CRS10b], for instance) and the mean value principle in Lemma 7.2,

inf
Br
v ≥ Cv(0) = CM.

24



We have that

λ(Br) =
ˆ
Br

dλ ≤ 1

CM

ˆ
Br

vdλ.

Since u ≡ 0 in the support of λ and u is L-subharmonic (see [AC81, Lemma 2.2]) we get
ˆ
Br

vdλ =
ˆ
Br

(v − u)dλ ≤
ˆ
B2r

(v − u)dλ.

By the properties of the measure λ, we obtain
ˆ
B2r

(v − u)dλ = −
ˆ
B2r

∣y∣β∇(v − u) ⋅ ∇u =
ˆ
B2r

∣y∣β (∣∇u∣2 − ∣∇v∣2) ,

and using the definition of the functional and the fact that u is a minimizer, we get
ˆ
B2r

∣y∣β (∣∇u∣2 − ∣∇v∣2) = J (u,B2r) −m(B+
2r(u)) −J (v,B2r) +m(B′

2r) ≤ Crn.

All together, we have that

λ(Br) ≤
1

CM
Crn,

and, since uniform non-degeneracy (see Corollary 7.3 ) implies that M ≥ Crα we can conclude the
proof of the first statement.

To show the second one, note that since the free boundary has locally finite (n−1)-dimensional
Hausdorff measure, given a set E ⊂ F (u) and k ∈ N we can find a collection of balls Ik = {Bki }i
such that

E ⊂ ⋃
B∈Ik

B, sup
B∈Ik

r(B) ≤ 1/k and ∑
B∈Ik

r(B)n−1 ≤ 2Hn−1(E).

Thus,

λ(E) ≤ ∑
B∈Ik

λ(B) ≲ ∑
B∈Ik

r(B)n−α ≤ sup
B∈Ik

r(B)1−α ∑
B∈Ik

r(B)n−1 k→∞ÐÐÐ→ 0.

Next we study the measure away from the free boundary. We should emphasize here that even
though the estimates in Lemma 7.5 and Theorem 7.6 depend on E0, they will be used to remove
the dependence of our other estimates on E0. More precisely, Theorem 7.6 will play a role in
establishing the continuity of the Green function in Lemma 7.9. This qualitative fact is used to
prove the quantitative uniform Hölder character in Theorem 7.8.

After proving Theorem 7.8, we may drop the hypothesis ∥u∥Hβ(B2) ≤ E0 from both Lemma 7.5
and Theorem 7.6.

Lemma 7.5. If u ∈ Hβ
loc(B2) is a minimizer of J in the ball B2 with ∥u∥Hβ(B2) ≤ E0 and 0 ∈ F (u),

then for every x0 = (x′,0) ∈ B1,0(u) we get

lim
y→0

∣y∣β ∣uy(x′, y)∣ ≈ Cdist(x0, F (u))−α.

Moreover, for every ball B centered at Rn × {0} with B′ ⊂⊂ B1,0(u), we have that

∣y∣β ∣uy(x′, y)∣ ≤ Cdist(x0, F (u))−α,

for ∣y∣ < CBdist(x,F (u)), where the constant CB may depend on B.
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Proof. Let u be a minimizer, and let B ∶= Br(x0) with B′ ⊂ B1,0(u). By [Sil12, Lemma 2.2], we
can write u(x′, y) = ∣y∣1−βg(x′) +O(y2), where g is a C1+β( 1

2
B′) function, with a uniform control

on the error term in terms of ∥u∥L2(B,∣y∣β). In particular, limy→0 ∣y∣β−1u(x′, y) = g(x′).
Let us define

ũ(x′, y) ∶=
⎧⎪⎪⎨⎪⎪⎩

u(x′, y) if y ≥ 0

−u(x′,−y) if y < 0.
(7.6)

It is clear that Lũ ≡ 0 in B. According to [Vit18, Lemma 3.26, Corollary 3.29] v(x′, y) =
∣y∣βy−1ũ(x′, y) is an even C∞( 1

2
B) function in H2−β(B) (note that 1 < 2 − β < 3 is out of the

usual range of β) and satisfying ∇ ⋅ (∣y∣2−β∇v) = 0. The mean value principle (see Lemma 7.2)
applies also to this case, so

g(x′0) = v(x0) =
1´

1
2B

∣y∣2−β
ˆ

1
2B

∣y∣2−βv(x) = C 1

r2−β+n+1

ˆ
1
2B

∣y∣u(x),

and using P1 -P3 , if r = dist(x0, F (u)) we get

g(x′0) = v(x0) ≈ Crβ−2+1+α = Cr−α.

On the other hand, on the upper half plane we have uy = (y1−βv)y = (1 − β)y−βv + y1−βvy, so

yβuy(x′, y) = (1 − β)v(x′, y) + yvy(x′, y),

and
lim
y→0+

yβuy(x′, y) = (1 − β)g(x′) ≈ r−α,

the limit being uniform on compact subsets of B.

Theorem 7.6. If u ∈ Hβ
loc(B2) is a minimizer of J in the ball B2 with ∥u∥Hβ(B2) ≤ E0, then the

measure λ is absolutely continuous with respect to the Lebesgue measure, and for m-almost every
x ∈ B′

1(u) we have that

dλ

dm
(x) = 2 lim

y→0
∣y∣βuy(x′, y) ≈ χB1,0(u)(x)dist(x,F (u))−α,

with constants depending on n, α and E0.

Proof. By Theorem 7.4 we only need to show absolute continuity in B1,0(u) ∪ B′
1,+(u). For x =

(x′,0) ∈ B′
1,+(u) by [CS07, Lemma 4.2] we have that

lim
y→0

∣y∣βuy(x′, y) = 0,

and, for x ∈ B1,0(u) we have seen in Lemma 7.5 that

lim
y→0

∣y∣βuy(x′, y) ≈ dist(x,F (u))−α,

showing the second part of the statement.
Consider a ball Br(x0) with x0 ∈ Rn×{0} and a collection of even smooth functions χBr ≤ ψk ≤

χB
r+ 1
k

. Then

λ(Br) ≤ −
ˆ

∣y∣β∇u ⋅ ∇ψk ≤ λ(Br+ 1
k
), (7.7)
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and for every ε > 0 we use the Green’s theorem to get

−
ˆ

∣y∣β∇u ⋅ ∇ψk = −
ˆ
∣y∣≤ε

∣y∣β∇u ⋅ ∇ψk −
ˆ
∣y∣=ε

∣y∣βψk∇u ⋅ ν dm.

Using the symmetry properties and taking limits,

−
ˆ

∣y∣β∇u ⋅ ∇ψk = 2 lim
ε→0

ˆ
εβψk(x′, ε)uy(x′, ε)dm(x′). (7.8)

Next we want to apply the dominated convergence theorem. Let us begin by considering a ball
Br(x0) ⊂ B1 centered in the zero phase, with dist(B′

r(x0), F (u)) ≥ 2r. In this case, by Lemma 7.5
we have

εβuy(x′, ε) ≲ r−α, (7.9)

with constants depending perhaps on u and Br as well.
If instead B′

r(x0) ⊂⊂ B′
1,+(u), by [Vit18, Theorem 3.28] u is an even C∞ function on B′

r(x0),
so ∣y∣βuy = O(∣y∣1+β). Thus

εβuy(x′, ε) ≲ r2−2α. (7.10)

In both cases, the dominated convergence theorem applies and

lim
ε→0

ˆ
B
r+ 1
k
∩{y=ε}

εβψkuy dm =
ˆ
B′
r+ 1
k

ψk lim
ε→0

(εβuy(⋅, ε))dm,

and by (7.7) and (7.8) we obtain

λ(Br) ≤ 2

ˆ
B′
r+ 1
k

ψk lim
ε→0

(εβuy(⋅, ε))dm ≤ λ(Br+ 1
k
).

In particular limε→0(εβuy(⋅, ε)) ∈ L1
loc(B1,0(u) ∪B′

1,+(u)) and taking limits in k we get

λ(Br) = 2

ˆ
B′
r

lim
ε→0

(εβuy(⋅, ε))dm.

A consequence of our control of the behavior of λ is that we can establish the existence of
exterior corkscrews. We should note that exterior corkscrews can be also obtained by a purely
geometric argument given the non-degeneracy and positive density of Theorem 2.3 (see, e.g. the
proof of Proposition 10.3 in [DT15]).

Corollary 7.7. If u ∈ is a minimizer in B2 with ∥u∥Hβ(B2) ≤ E0, then B′
1,+(u) satisfies the

exterior corkscrew condition, i.e. there exists a constant C1 such that for every x ∈ F (u) and every
0 < r < dist(x, ∂B1) one can find x0 ∈ Br(x) so that

B(x0,C1r) ∩B′
1,+(u) = ∅.

Proof. This is a consequence of Theorems 7.4 and 7.6, and the positive density condition for the
zero phase. Indeed, given a ball Br ⊂ Rn+1, combining both theorems we get

rn−α ≳ λ(B1,0(u) ∩Br) ≥ CE0

ˆ
B1,0(u)∩Br

dist(x, ∂B1)−α

≥ C
⎛
⎝

sup
B1,0(u)∩Br

dist(x, ∂B1)
⎞
⎠

−α

∣B1,0(u) ∩Br ∣,
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and the positive density condition implies that

∣B1,0(u) ∩Br ∣ ≥ CE0r
n.

Thus,
sup

B1,0(u)∩Br
dist(x, ∂B1) ≥ CE0r,

which is equivalent to the exterior corkscrew condition.

7.3 Uniform Hölder character

The uniform non-degeneracy of Section 7.1 lets us conclude uniform control on the Hölder norm
of u.

Theorem 7.8. Let u be a minimizer of J in Br with 0 ∈ F (u). Then ∣u(x)∣ ≤ C ∣x∣α for every
x ∈ ∂Br/2 with C depending only on n and α.

Proof. Again we set v to be the L-harmonic replacement of u inside of Br as in (7.4). Let ũ ∶= v−u,
so that

Lũ = Lv −Lu = −λ = −∇ ⋅ (∣y∣β∇u),
and ũ ∈H1,2

0 (Br; ∣y∣β).
Consider the Green functionG ∶ Br×Br → R such that LG(⋅, z) = δz, andG(⋅, z) ∈H1,2

loc (Br∖{z})
with null trace on ∂Br (see [FJK82, Proposition 2.4]). By [FJK82, Proposition 2.1, Lemma 2.7]
there exists p0 > 1 so that ũ is the unique function in H1,p0

0 (Br; ∣y∣β) such that Lũ = λ, and moreover

ũ(z) =
ˆ
Br

G(z, x)dλ(x), (7.11)

for almost every z ∈ Br.
Below, in Lemma 7.9, we will see that the equality (7.11) is in fact valid for every z ∈ Br/4, that

is, ũ =
´
Br
G(⋅, x)dλ(x). In particular

v(0) = ũ(0) =
ˆ
Br

G(0, x)dλ(x).

Next we use the following estimate (see [FJK82, Theorem 3.3]): let z, x ∈ Br/4. Then

G(z, x) ≈
ˆ r

∣x−z∣

sds

w(B(x, s)) ,

where w is the A2 weight w(x) = ∣y∣β . Computing, for x = (x′, y) we obtain

w(B(x, s)) ≈ sn
ˆ y+s

y−s
∣t∣β dt ≈ snmax{∣y∣, s}β+1.

First we assume that n − 2α > 0. Thus, if x ∈ B′
r/4 then

G(z, x) ≈
ˆ r

∣x−z∣
s−n−β ds ≈ ∣x − z∣−n−β+1 = ∣x − z∣2α−n. (7.12)

Note that λ(Br) ≤ Crn−α by Theorem 7.4. Thus, writing At,s ∶= Bs ∖Bt, we have that

v(0) =
ˆ
Br

G(0, x)dλ(x) ≤
ˆ ∞

cr2α−n
λ ({x ∈ Br/4 ∶ G(0, x) > t})dt +

ˆ
Ar/4,r

G(0, x)dλ(x).
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By the strong maximum principle, the Green function in the annulus is bounded by Crn−2α. This
fact, together with Theorem 7.4, implies that

v(0) ≤
ˆ ∞

cr2α−n
λ(B

Ct
−1

(n−2α)
)dt +Crα ≤ C

ˆ ∞

cr2α−n
t−

n−α
n−2α dt +Crα = Crα.

By the mean value theorem we conclude that

 
∂Br

v dσ ≤ Crα,

where dσ = ∣y∣βdHn. The theorem follows by observing that, as in (7.5), the mean of v dominates
u by sup∂Br/2 u ≤ sup∂Br/2 v ≤ C

ffl
∂Br

v dσ.

In case n − 2α = 0, which could only happen for n = 1 and α = 1/2, estimate (7.12) reads as

G(z, x) ≈ log( r

∣x − z∣ ) ,

and the proof follows the same steps.
In case n − 2α < 0, then estimate (7.12) reads as

G(z, x) ≈ rn−2α,

and the estimate is even better compared to the above.

Lemma 7.9.
´
Br
G(z, x)dλ(x) is continuous in z ∈ Br/4.

Proof. Let ε < r/2 and let z1, z2 ∈ Br/4, with ∣z1 − z2∣ ≤ ε/2. Then

ˆ
Br

∣G(z1, x) −G(z2, x)∣dλ(x) ≤
ˆ
Br∖Bε(z1)

∣G(z1, x) −G(z2, x)∣dλ(x)

+
ˆ
Bε(z1)

G(z1, x)dλ(x) +
ˆ
Bε(z1)

G(z2, x)dλ(x). (7.13)

Next we use (7.12) and Theorems 7.4 and 7.6. By decomposing the domain on dyadic annuli,
in case n − 2α > 0 we get

ˆ
Bε(z1)

G(z1, x)dλ(x) ≤∑
j≤0

ˆ
A2j−1ε,2jε(z1)

G(z1, x)dλ(x) ≲∑
j≤0

λ(B2jε(z1))(2j−1ε)2α−n ≲ εα∑
j≤0

2jα.

In case n − 2α = 0 we obtain εα∑j≤0 2jα log ( r
2jε

) on the right-hand side instead, and in case

n − 2α < 0 we obtain εn−αr2α−n∑j≤0 2j(n−α). In every case, fixing ε small enough this term can be
as small as wanted. The same will happen with the last term on the right-hand side of (7.13).

On the other hand, by [FKS82, Theorem 2.3.12] Green’s function is uniformly continuous on the

set {(z, x) ∈ Br ×Br ∶ ∣z −x∣ > ε} so ∣G(z1, x1)−G(z2, x2)∣ ≤ δε(∣z1 − z2∣+ ∣x1 −x2∣) with δε(t)
t→0ÐÐ→ 0.

Thus, ˆ
Br∖Bε(z1)

∣G(z1, x) −G(z2, x)∣dλ(x) ≤ δε(∣z1 − z2∣)λ(Br)→ 0.

Assuming that ∣z1 − z2∣ is small enough, we obtain that
´
Br

∣G(z1, x) −G(z2, x)∣dλ(x) is as small
as wanted and the claim follows.
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Remark 7.10. In light of Theorem 7.8 and Caccioppoli inequality (see Section 3.1) , arguing as in
[CRS10b, Theorem 1.1] we obtain that every minimizer u in a ball Br with 0 ∈ F (u) has uniform
Cα character in Br/2 and the same for the Hβ norm. Moreover, using [CRS10b, Theorem 1.2] we
can find interior corkscrew points with constants not depending on these norms. This allows us to
remove the a priori dependence on ∥u∥Hβ from all of our results above.

7.4 Lower estimates for the distributional fractional Laplacian

Next we bound the growth of the measure around a free boundary point from below. None of
these results will be used in the present paper, but we include them to give a complete picture of
the tools under consideration.

Theorem 7.11. Let u ∈ Hβ(B2r) be a minimizer of J in B2r such that 0 ∈ F (u). Then we have

λ(Br) ≥ Crn−α.

Proof. Let Lu ∶= −∇ ⋅ (∣y∣β∇u) and let v be the L-harmonic replacement of u in Br (see (7.4)). Let
ũ ∶= v − u and consider the Green function G ∶ Br ×Br → R as in the proof of Theorem 7.8.

Let 0 < κ < 1 to be fixed later. By P1 -P3 in Theorem 2.3 there exists a point z0 ∈ Bκr with

u(z0) ≈ (κr)α, (7.14)

with constants depending only on n and α by Remark 7.10. By P1 there is a constant c such that
for every z ∈ B(z0, cκr) we have that u(z) ≈ (κr)α. Since λ is supported on the zero phase of u,
the ball B(z0, cκr) is away from its support, and

ũ(z) =
ˆ
Br∖B(z0,cκr)

G(z, x)dλ(x).

Using the strong maximum principle (see [HKM06, Theorem 6.5]) and (7.12), for almost every
z ∈ B(z0, cκr/2) we get

ũ(z) ≤ λ(Br) sup
x∈Br∖B(z0,cκr)

G(z, x) = λ(Br) sup
x∈Br/4∖B(z0,cκr)

G(z, x)

≈ λ(Br) sup
x∉B(z0,cκr)

∣x − z∣2α−n = λ(Br)(cκr)2α−n.

That is,
ũ(z) ≲ λ(Br)(cκr)2α−n. (7.15)

On the other hand, note that u is continuous. By the Riesz representation theorem, there exists
a probability measure ωzL such that

v(z) =
ˆ
∂Br

u(x)dωzL(x).

We can choose r so that ∂Br intersects a big part of a corkscrew ball, i.e., assume that there
exists a point ξ0 ∈ ∂B′

r which is the center of a ball B′(ξ0, cr) where u has positive values. This
can be done by the interior corkscrew condition, with all the constants involved depending only on
n and α. Then, changing the constant if necessary, all points ξ ∈ B(ξ0, cr) satisfy that u(ξ) ≥ Crα
by the non-degeneracy condition and the optimal regularity. Call U ∶= ∂Br ∩B(ξ0, cr). Then

v(z) ≳ rαωzL(U).
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But ωzL(U) is bounded below by a constant by [HKM06, Lemma 11.21] and the Harnack inequality
(use a convenient Harnack chain). All in all, we have that

v(z) ≳ rα. (7.16)

Combining (7.15), (7.14) and (7.16) and choosing κ small enough, depending in n and α, we
get

λ(Br) ≳
ũ(z0)

(cκr)2α−n ≥ Cr
α −C ′(κr)α
(cκr)2α−n ≥ Cn,αrn−α,

for κ small enough.
In case n−2α = 0, that is for n = 1 and α = 1/2, using similar changes as in the proof of Theorem

7.8 we get ũ(z) ≲ λ(Br) supx∉B(z0,cκr) log ( r
∣x−z∣) ≈ λ(Br)∣ logκ∣ instead of (7.15). In case n−2α < 0,

the proof is even easier than before.

Remark 7.12. Theorem 7.11 implies that the (n − α)-Hausdorff measure of the free boundary is
locally finite. This does not suffice to show finite perimeter of the positive phase and, therefore, we
had to use the approach in Section 5.

The following theorem summarizes the information that we have gathered so far about the
measure λ.

Theorem 7.13. If u ∈ Hβ
loc(Ω) is a minimizer of J in Ω, then the measure λ is absolutely

continuous with respect to the Lebesgue measure in Ω′(u). Moreover, given x0 ∈ F (u) and r > 0
such that B2r(x0) ⊂ Ω, then

λ(Br(x0)) ≈ rn−α, (7.17)

and for almost every x ∈ B′
r(x0) we have that

dλ

dm
(x) = 2 lim

y→0
∣y∣βuy(x′, y) ≈ χΩ0(u)(x)dist(x,F (u))−α,

with constants depending only on n and α.

8 Rectifiability of the singular set

In this section we use the Rectifiable-Reifenberg and quantitative stratification framework of Naber-
Valtorta [NV17] to prove Hausdorff measure and structure results for the singular set. Recall that
k∗α is the first dimension in which there exists non-trivial α-homogeneous global minimizers to (1.1)
defined in Section 5.

Theorem 8.1. Let u ∈ Hβ
loc(Ω) be a minimizer of (1.1) in a domain Ω. Then Σ(u) is (n − k∗α)-

rectifiable and for every D ⊂⊂ Ω, we have

Hn−k
∗
α(Σ(u) ∩D) ≤ Cn,α,dist(D,∂Ω).

Part of the power of this framework is that it is very general. One needs certain compactness
properties on the minimizers and a connection between the drop in the monotonicity formula and
the local flatness of the singular set (see Theorem 8.14 below). To avoid redundancy and highlight
the original contributions of this article, we omit many details here and try to focus on the estimates
needed to apply this framework to minimizers of (1.1). Whenever we omit details we will refer the
interested reader to the relevant parts of [EE19].
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The key first step is to introduce the appropriate formulation of quantitative stratification.
First introduced by Cheeger and Naber [CN13] in the context of manifolds with Ricci curvature
bounded from below, this is a way to quantify the intuitive fact that F (u) should “look” (n−k∗α)-
dimensional near a point x0 ∈ F (u) at which the blow-ups have (n − k∗α)-linearly independent
translational symmetries.

8.1 Quantitative stratification for minimizers to J
We have seen in Section 4.1 that homogeneous functions have linear spaces of translational sym-
metry. Here we want to quantify (both in terms of size and stability) how far a function is from
having no more than k directions of translational symmetry.

Definition 8.2. We write V k for the collection of linear k-dimensional subspaces of Rn. A function
u is said to be k-symmetric if it is α-homogeneous with respect to some point, and there exists a
L ∈ V k so that

u(x + v) = u(x), for every v ∈ L.
A function u is said to be (k, ε)-symmetric in a ball B if for some k-symmetric ũ we have

r−2−n
ˆ
B

∣y∣β ∣u − ũ∣2dy < ε.

Next we define the k-stratum Sk(u), the (k, ε)-stratum Skε (u) and the (k, ε, r)-stratum Skε,r(u).
A key insight here is to define these strata by the blow-ups having k or fewer symmetries as opposed
to exactly k symmetries.

Definition 8.3. Let 0 ≤ k ≤ n, 0 < ε <∞ and 0 < r < dist(x, ∂Ω), let u be a continuous function in
Ω and let x ∈ F (u). We say that:

• x ∈ Sk(u) if u has no (k + 1)-symmetric blow-ups at x.

• x ∈ Skε (u) if u is not (k + 1, ε)-symmetric in Bs(x) for every 0 < s ≤ min{1,dist(x, ∂Ω)}.

• x ∈ Skε,r(u) if u is not (k + 1, ε)-symmetric in Bs(x) for every r ≤ s ≤ min{1,dist(x, ∂Ω)}.

If it is clear from the context we will omit u from the notation.

We now detail some standard properties of the strata defined above and how they interact
with the free boundary F (u). While the proofs are mostly standard, we give the details as the
scaling associated to the problem (1.1) adds some technical difficulties. This proof also provides a
blueprint for fleshing out the details in Sections 8.3 and 8.4.

Lemma 8.4. Let 0 ≤ j ≤ k ≤ n, 0 < ε ≤ τ < ∞, 0 < r ≤ s < dist(x, ∂Ω), and let u ∈ Hβ
loc(Ω) be a

minimizer in Ω. Then:

1. S0 ⊂ S1 ⊂ ⋯ ⊂ Sn−1 = Sn = F (u). Moreover, for the reduced boundary, we have that Fred(u) ⊂
Sn−1 ∖ Sn−2 and Σ(u) ⊂ Sn−k∗α .

2. We have Sjτ ⊂ Skε ⊂ Sk and, moreover, Sk = ⋃
ε>0

Skε .

3. Also Sjτ ⊂ Sjτ,r ⊂ Skε,s and, moreover, Skε = ⋂
r>0

Skε,r.

4. The sets Skε are closed, in both x and u: if ui
L2

loc(Ω;∣y∣β)
ÐÐÐÐÐÐ→ u and xi → x with xi ∈ Skε (ui), then

x ∈ Skε (u).
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5. If ui
L2

loc(Ω;∣y∣β)
ÐÐÐÐÐÐ→ u, εi → 0, and ui are (k, εi)-symmetric in B1, then u is k-symmetric in B1.

Proof. 1. The inclusions Sk ⊂ Sk+1 of the first property are trivial. The last equalities are con-
sequences of the non-degeneracy. The fact that Fred(u) ∩ Sn−2 = ∅ can be deduced from the
Hausdorff convergence of the free boundaries described in Lemma 3.4 and Theorem 2.4. Finally,
Σ(u) ⊂ Sn−k∗α is a consequence of Lemmas 4.5 and 5.2.

2. The inclusions Sjτ ⊂ Skε of the second property come from the definitions: if x ∉ Skε then there
exist a ball B ⊂ Ω centered at x and a (k+1)-symmetric ũ so that r(B)−2−n ´

B
∣y∣β ∣u− ũ∣2dy < ε ≤ τ.

But ũ is also (j + 1)-symmetric. Thus, x ∉ Sjτ .
The fact that Skε ⊂ Sk is a consequence of the uniform convergence on Lemma 3.4: if x ∉ Sk,

then u has a (k + 1)-symmetric blow-up sequence ui → u0 at x converging uniformly. Thus,

ˆ
Bρi(x)

∣y∣β ∣u(x) − ραi u0 (x − x0

ρi
)∣

2

dx = ρβ+2α+n+1
i

ˆ
B1(x)

∣y∣β ∣u (x0 + ρix)
ραi

− u0(x)∣
2

dx

≤ ρn+2
i ω(B1)∥ui − u0∥L∞ .

That is,

ρ−n−2
i

ˆ
Bρi(x)

∣y∣β ∣u(x) − rαi u0 (x − x0

ρi
)∣

2

dx
i→∞ÐÐ→ 0,

and therefore, for every ε there exists a ball small enough so that u is (k + 1, ε)-symmetric in it.
In particular Sk ⊃ ⋃ε>0 S

k
ε .

To see the converse, assume that x ∉ ⋃ε Skε . Then for every i ∈ N there exist a (k+1)-symmetric
function ũi, invariant with respect to Li ∈ V k+1 and ri < min{1,dist(x, ∂Ω)} such that

1

rn+2
i

ˆ
Bri

∣y∣β ∣u(x) − ũi(x)∣2 dx <
1

i
.

In the case when ri stays away from zero, since ri < 1, we can take a subsequence converging to
r0 ∈ (0,1), and one can see that u is (k + 1)-symmetric in the ball Br0(x0). Otherwise, consider

ui ∶= u(x0+rix)
rαi

and ũi,i = ũi(x0+rix)
rαi

. Taking subsequences, we can assume that Li → L0 locally in

the Hausdorff distance, and that ui → u0 locally uniformly. One can check also using the Hölder
character of u that {ũi,i} is uniformly bounded in L2(B; ∣y∣β), so taking subsequences again, we can
assume the existence of ũ0 so that ũi,i → ũ0 in L2(B; ∣y∣β). This function will be (k+1)-symmetric,
being invariant in the directions of L0. By the triangle inequality we get

ˆ
B1

∣y∣β ∣u0 − ũ0∣2 dx ≲
ˆ
B1

∣y∣β ∣u0 − ui∣2 dx +
ˆ
B1

∣y∣β ∣ui − ũi,i∣2 dx +
ˆ
B1

∣y∣β ∣ũi,i − ũ0∣2 dx.

The first and the last integrals converge to zero by our choice of the subsequence. For the middle
term just change variables as before:

ˆ
B1

∣y∣β ∣ui − ũi,i∣2 dx =
1

rn+2
i

ˆ
Bri

∣y∣β ∣u(x) − ũi(x)∣2 dx→ 0.

Thus we have that u0 = ũ0 and, therefore, x ∉ Sk.
3. The inclusions Sjτ ⊂ Sjτ,r ⊂ Skε,s of the third property come from the definitions and thus,

Skε ⊂ ⋂r>0 S
k
ε,r. The converse implication is also trivial.

4. The closedness is obtained by a contradiction argument again. It is straightforward but we
write it here for the sake of completeness.
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Assume by contradiction that x ∉ Skε (u). Then there exist a (k + 1)-symmetric function ũ and
a radius r such that

ε0 ∶=
1

rn+2

ˆ
Br(x)

∣y∣β ∣u(x) − ũ(x)∣2 dx < ε.

Let τ < 1 to be fixed and consider i0 ∈ N so that Bτr(xi) ⊂ Br(x) for every i ≥ i0. By the triangle
inequality

1

(τr)n+2

ˆ
Bτr(xi)

∣y∣β ∣ui(x) − ũ(x)∣2 dx ≤
1

(τr)n+2
∥ui − u∥2

L2(Bτr(xi);∣y∣β) +
ε0
τn+2

.

We define τ so that ε0
τn+2 = ε+ε0

2
. Choose i0 big enough so that every i ≥ i0 satisfies that

∥ui − u∥2
L2(Bτr(xi);∣y∣β) < (τr)n+2 ε−ε0

2
. Then xi ∉ Skε (ui), contradicting the hypothesis.

5. Assume that ũi is invariant with respect to Li ∈ V k+1 andˆ
∣y∣β ∣ui − ũi∣2 ≤ εi.

Consider a subsequence {ui} so that the varieties Li → L locally in the Hausdorff distance. Using
the triangle inequality as in 4 it follows that u is (k, δi)-symmetric with δi → 0.

Proposition 8.5. There exists ε(n,α) > 0 such that if u ∈ Hβ
loc(Ω) is a minimizer of J in a

domain Ω ⊂ Rn+1, then Σ(u) ⊂ Sn−k
∗
α

ε (u).

Proof. It is enough to show that if u is a minimizer of J in B2(0), then Σ(u)∩B1(0) ⊂ Sn−k
∗
α

ε (u).
By contradiction, let us assume that there is a sequence of positive numbers εi

i→∞ÐÐ→ 0, functions
ui minimizing J in B2(0) and xi ∈ Σ(ui)∩B1(0), ri ∈ (0,1], with ui being (n−k∗α+1, εi)-symmetric
in Bri(xi), and let Li be an (n − k∗α + 1)-dimensional subspace that leaves invariant one of the
admissible (n − k∗α + 1)-symmetric approximants. By rescaling we can assume that ri = 1.

Passing to a subsequence we can assume that Li → L0 ∈ V n−k∗α+1 locally in the Hausdorff
distance and xi → x0. By the compactness results in Lemma 3.4 we have a uniform limit u0 which
is a minimizer as well, and it is (n− k∗α + 1)-symmetric with invariant manifold L0. By Lemma 4.4
any blow-up u0,0 at x0 will be (n − k∗α + 1)-symmetric as well. Applying Lemma 4.5 (n − k∗α + 1)
times we find that the restriction of u0,0 to the orthogonal manifold L⊥0 is a (k∗α − 1)-dimensional
minimal cone which, by Lemma 5.2 is the trivial solution, and so is u0,0. Thus, x0 is a regular
point for u0.

On the other hand, the Hausdorff convergence of Lemma 3.4 together with the improvement
of flatness of Theorem 2.4 imply that for i big enough xi ∈ Fred(ui), reaching a contradiction.

8.2 The Refined Covering Theorem

Our estimates on the size and structure of the singular set Σ(u) come from similar results con-
cerning the Skε (u). In particular, we prove the following covering result:

Theorem 8.6. Let u ∈ Hβ(B5) be a minimizer to (1.1) in B5 with 0 ∈ F (u). For given real
numbers ε > 0, 0 < r ≤ 1 and every natural number 1 ≤ k ≤ n − 1, we can find a collection of balls
{Br(xi)}Ni=1 with N ≤ Cn,α,εr−k such that

Skε,r(u) ∩B1 ⊂⋃
i

Br(xi).

In particular, ∣B′
r(Skε,r ∩B1)∣ ≤ Cn,α,εrn−k for every 0 < r ≤ 1 and

Hk(Skε (u) ∩B1) ≤ Cn,α,ε.
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From Proposition 8.5 and Theorem 8.6 we can conclude the following corollary which comprises
the second part of Theorem 8.1 above.

Corollary 8.7. If u ∈ Hβ(B5) is a minimizer to (1.1) in B5 with 0 ∈ F (u), then Σ(u) is (n−k∗α)-
rectifiable and for every 0 < r ≤ 1 we have

∣Br(Σ(u) ∩B1)∣ ≤ Cn,αrk
∗
α .

In particular,

Hn−k
∗
α(Σ(u) ∩B1) ≤ Cn,α.

Rectifiability is encoded in the following result. We omit the details of proof here but it
is a consequence of the packing result above, the Rectifiable-Reifenberg theorem of [NV17] and
Theorem 8.14 below. For more details see Sections 2 and 8 of [EE19] (particularly Theorem 2.2 in
the former and the proof of Theorem 1.12 in the latter).

Theorem 8.8. Let u be a non-negative, even minimizer to (1.1) in a domain Ω. Then Skε (u) is
k-rectifiable for every ε and, hence, each stratum Sk(u) is k-rectifiable as well.

The proof of Theorem 8.6 follows from inductively applying the following, slightly more tech-
nical, packing result (for details see Section 4 of [EE19]).

Theorem 8.9. Let ε > 0. There exists η(n,α, ε) such that, for every minimizer u ∈ Hβ(B5) of J
in B5 with 0 ∈ F (u) and 0 < R < 1/10, there is a finite collection U of balls B with center xB ∈ Skε,ηR
and radius R ≤ rB ≤ 1/10 which satisfy the following properties:

A) Covering control:
Skε,ηR ∩B1 ⊂ ⋃

B∈U
B.

B) Energy drop: For every B ∈ U ,

either rB = R, or sup
2B

Ψu
2rB

≤ sup
B2

Ψu
2 − η.

C) Packing:

∑
B∈U

rkB ≤ c(n,α, ε).

We construct the balls of Theorem 8.9 using a “stopping time” or “good ball/bad ball” ar-
gument. Much of this argument uses harmonic analysis and geometric measure theory and is
completely independent of the original problem (1.1). However, there are a few places in which we
need to connect the behavior of minimizers to the geometric structure of the singular set. Here we
will sketch the “good ball/bad ball” argument, taking for granted the estimates needed to apply
this argument to our functional. In the next few subsection we will provide these estimates. For
more details on the construction itself we refer the reader to Section 7 in [EE19].

Outline of the Construction in Theorem 8.9 To find this covering we define good and bad
balls as follows: imagine our ball, B, has radius 1. We say that B is a good ball, if at every point
in x ∈ Skε (u)∩B the monotone quantity centered at that point at some small scale, ρ, is not much
smaller than the monotone quantity on ball B (we say these points have “small density drop”). A
ball B is a bad ball if all the points in Skε (u) ∩B with small density drop are contained in a small
neighborhood of a (k − 1)-plane. This dichotomy follows from Theorem 8.10 in Section 8.3.

In a good ball of radius r we cover Skε (u) with balls of radius ρr iterating the construction until
we find a bad ball or until the radius of the ball becomes very small. In a bad ball, we cover Skε (u)
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away from the (k − 1)-plane without much care. Close to the (k − 1)-plane we cover Skε (u) with
balls of radius ρr iterating the construction until we reach a good ball or until the radius of the
ball becomes very small.

Inside long strings of good balls, the packing estimates follow from powerful tools in geometric
measure theory (see Theorem 8.13 below) and the connection between the drop in monotonicity
and the local flatness of the singular strata (see Theorem 8.14 below). We give more details in
Section 8.4.

Inside long strings of bad balls each of which is near the (k − 1)-plane of the previous bad ball,
we have even better packing estimates than expected (as we are effectively well approximated by
planes which are lower dimensional). This leaves only points which are in many bad balls and in
most of those balls they are far away from the (k−1)-plane. However, at these points the monotone
quantity drops a definite amount many times, which contradicts either finiteness or monotonicity.
This implies that the points and scales inside the bad balls which are not close to the (k−1)-plane
form a negligible set (the technical term is a Carleson set). We give more information about the
bad balls in Section 8.3.

8.3 Tools for bad balls: key dichotomy

Theorem 8.10 (Key dichotomy). Let ε, ρ, γ, η′ > 0 be fixed numbers with ργ < 2. There exists an
η0(n,α, ε, ρ, γ, η′) < ρ/100 such that for every η ≤ η0, every r > 0, every E > 0 and every minimizer
u ∈ Hβ(B4r) of J in B4r with 0 ∈ F (u) and supBr Ψu

2r ≤ E, then either

• Ψu
γρr ≥ E − η′ on Skε,ηr ∩Br, or

• there exists ` ∈ Lk−1 so that {x ∈ Br ∶ Ψu
2ηr(x) ≥ E − η} ⊂ Bρr(`).

The key dichotomy is a direct consequence of the Lemma 8.11 below. The core idea is to make
effective the following assertion: if u is k-symmetric, then along the invariant manifold the Allen-
Weiss density is constant, and every point away from the manifold will have (k + 1)-symmetric
blow-ups by Lemma 4.4.

Lemma 8.11. Let ε, ρ, γ, η′ > 0 be fixed numbers with γρ < 2. There exist η0, θ > 0 such that for
every η < η0, every E > 0 and every minimizer u of J in B4 with 0 ∈ F (u) and supB1

Ψu
2 ≤ E, if

there exist w0, . . . ,wk ∈ B1 and affine manifolds Li ∶= ⟨w0, . . . ,wi⟩ ∈ V i with

wi ∉ Bρ(Li−1), and Ψu
2η(wi) ≥ E − η for every i ∈ {0,⋯, k},

then,
Ψu
γρ(x) ≥ E − η′ on Bθ(Lk) ∩B1 (8.1)

and
Skε,η ∩B1 ⊂ Bθ(Lk) (8.2)

The proof follows (with only minor modifications) the proof in [EE19, Lemma 3.3]. We end
this subsection by formally defining the good/bad balls alluded to above:

Definition 8.12. Let x ∈ B2, 0 < R < r < 2 and u be a minimizer to J in B5. We say that the ball
Br(x) is good if

Ψu
γρr ≥ E − η′ on Skε,ηR ∩Br(x),

and otherwise we say that Br(x) is bad.

By Theorem 8.10 in any bad ball B there exists an affine (k − 1)-manifold `B with

{w ∈ B ∶ Ψu
2ηr(w) ≥ E − η} ⊂ Bρr(`k−1

B ). (8.3)
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8.4 Tools for good balls: packing estimates and GMT

In this section we control the local flatness of the singular strata by the drop in monotonicity. To
do this we introduce a key tool from geometric measure theory which estimates the flatness of a
set. Given a Borel measure µ, a point x and a radius r, the beta coefficient is defined as follows:

βkµ,2(Br(x))2 ∶= βkµ,2(x, r)2 = inf
L∈V ka

1

rk

ˆ
Br(x)

dist(z,L)2

r2
dµ(z) (8.4)

where V ka stands for the collection of k-dimensional affine sets of Rn. The beta coefficients are
meant to measure in a scale invariant way how far is a measure from being flat, in this case in the
L2 distance, although other Lp versions have been used in the literature for 1 ≤ p ≤∞ quite often,
dating back to [Jon90] (for the L∞ version) and David-Semmes [DS93] (for the Lp version).

If we control the size of the βk’s we can conclude size and structure estimates on the measure
µ. The following theorem says exactly this and represents a major technical achievement. It differs
(importantly) from prior work in this area by the lack of a priori assumptions on the upper or
lower densities of the measure involved.

Theorem 8.13 (Discrete-Reifenberg Theorem, see [NV17, Theorem 3.4]). Let {Brq(q)}q be a
collection of disjoint balls, with q ∈ B1(0) and 0 < rq ≤ 1, and let µ be the packing measure
µ ∶= ∑q rkq δq, where δq stands for the Dirac delta at q. There exist constants τDR,CDR > 0 depending
only on the dimension such that if

ˆ 2r

0

ˆ
Br(x)

βkµ,2(z, s)2 dµ(z)ds
s

≤ τDRrk for every x ∈ B1(0), 0 < r ≤ 1,

then
µ(B1(0)) =∑

q

rkq ≤ CDR.

To obtain the packing estimates required for the Discrete-Reifenberg Theorem, we need to
control the beta coefficients. The key estimate of this entire framework lies in the following theorem,
which shows the drop in monotonicity at a given point and a given scale controls the beta coefficient
at a comparable scale.

Theorem 8.14. Let ε > 0 be given. There exist δ(n,α, ε) and c(n,α, ε) such that for every
u ∈ Hβ(B5r) minimizing J in B5r(x) with x ∈ F (u) and

⎧⎪⎪⎨⎪⎪⎩

u is (0, δ)-symmetric in B4r(x)
u is not (k + 1, ε)-symmetric in B4r(x),

(8.5)

and every Borel measure µ, we have that

βkµ,2(Br(x))2 ≤ c(n,α, ε)
rk

ˆ
Br(x)

(Ψu
4r(w) −Ψu

r (w)) dµ(w). (8.6)

We follow the proof of [EE19, Theorem 5.1] closely. First the authors give an explicit formula
for the beta coefficients.

Lemma 8.15. Let X be the center of mass of a Borel measure µ on B = Br(x). Let {λi}ni=1 be
the decreasing sequence of eigenvalues of the non-negative bilinear form

Q(v,w) ∶=
 
B

(v ⋅ (z −X))(w ⋅ (z −X))dµ(z),
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and let {vi}ni=1 be a corresponding orthonormal sequence of eigenvectors, that is vi ⋅ vj = δij and
Q(vi, v) = λivi ⋅ v. Then

βkµ,2(B)2 = 1

rk

ˆ
B

dist(z,Lk)2

r2
dµ(z) = µ(B)

rk
(λk+1 + ⋅ ⋅ ⋅ + λn)

r2
,

where Lk ∶=X + span⟨v1, . . . , vk⟩.
Next we find a relation between the eigenvalues of Q and Allen-Weiss’ energy.

Lemma 8.16. Under the hypothesis of Lemma 8.15, for every u ∈ Hβ(B5r) minimizing J in
B5r(x) and every i ≤ n, we have that

λi
2

rn+2

ˆ
A2r,3r(x)

∣y∣β(vi ⋅Du(z))2 dz ≤ C
 
Br(x)

(Ψu
4r(w) −Ψu

r (w)) dµ(w). (8.7)

Proof. The argument follows as in [EE19, (18) and below]. In formula (18) one needs to change
u(z) by αu(z), which can be done with exactly the same argument.

Finally, using compactness, we bound the left-hand side of (8.16) from below.

Lemma 8.17. Let ε > 0 be given. There exists a δ(n,α, ε) and c(n,α, ε) such that, for every
orthonormal basis {vi}ni=1 and every u ∈ Hβ(B5r) minimizing J in B5r(x) with x ∈ F (u) and
satisfying (8.5), we have that

1

c(n,α, ε) ≤ r−n
ˆ
A2r,3r(x)

∣y∣β
k+1

∑
i=1

(vi ⋅Du(z))2 dz. (8.8)

Proof. The proof follows that of [EE19, (19)] and we omit it.

Proof of Theorem 8.14. By Lemmas 8.15, 8.17 and 8.16 we get that

βkµ,2(B)2 ≤ µ(B)
rk+2

(n − k)λk+1

≤ µ(B)
rk

(n − k)c(n,α, ε)
k+1

∑
i=1

λi
rn+2

ˆ
A2r,3r(x)

∣y∣β(vi ⋅Du(z))2 dz

≤ c(n,α, ε)
rk

ˆ
Br(x)

(Ψu
4r(w) −Ψu

r (w)) dµ(w).
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Appendix

A Relation with the nonlocal Bernoulli problem

As in [DV17, Lemma 2.1], we see that the study of minimizers of J includes the study of minimizers
of J .

Proposition A.1. If f is a minimizer of J in the unit ball of Rn then f ∗ Py is a minimizer of
J in every ball B such that B′ ⊂⊂ B′

1.
If u = f ∗Py is a minimizer of J , then f is a minimizer for J . In particular, if u is a minimizer

of J in every ball, positive outside the hyperplane {y = 0}, and u(x, y) = O(∣(x, y)∣α), then u∣Rn×{0}
is a minimizer for J in every ball.

We follow [DV17, Lemma 2.1], that is, we use the following result from [CRS10a, Section 7].

Lemma A.2 (see [CRS10a, Section 7]). Let f, g satisfy that J0(f,B1), J0(g,B1) <∞, and suppose
that f − g is compactly supported in B1 ⊂ Rn. Then we have that

J0(g,B1) − J0(f,B1) = cn,α inf

ˆ
Ω

∣y∣β(∣∇v(x,u)∣2 − ∣∇(f ∗ Py)(x)∣2),

where the infimum is taken among all the symmetric bounded Lipschitz domains Ω with the property
that Ω∩(Rn×{0}) ⊂ B1 and among all symmetric functions v with trace g satisfying that v−f ∗Py
is compactly supported on Ω.

Proof of Proposition A.1. Let f be a minimizer of J in the unit ball of Rn and let Br be a ball
such that B′

r ⊂⊂ B′
1. We want to show that u ∶= f ∗ Py is a minimizer of J in Br.

Let v ∶ Rn+1 → R so that v ≡ u in Rn+1 ∖ Br and v ∈ H1(β,Br). Let g be the trace of v in
Rn × {0}. By Lemma A.2 we have that

J0(g,B1) − J0(f,B1) ≤ cn,α
ˆ
Br+ε

∣y∣β(∣∇v∣2 − ∣∇u∣2) (A.1)

for every ε > 0.
In particular, since g∣(B′)c ≡ 0, g is an admissible competitor for f and J(f,B1) ≤ J(g,B1), i.e.,

J0(g,B1) − J0(f,B1) ≥ −m({g > 0} ∩B1) +m({f > 0} ∩B1) (A.2)

=m({u > 0} ∩B′
r) −m({v > 0} ∩B′

r).

The proposition follows combining (A.1) and (A.2) and letting ε→ 0.
The converse follows the same sketch: every global minimizer can be expressed as the Poisson

extension of its restriction to the hyperplane by Proposition B.1 and it is left to the reader.

As a consequence of the previous proposition, all the results that we have proven for minimizers
of J also apply to minimizers of J :

Corollary A.3. If u ∶ Rn → R is a minimizer to J in B2 ⊂ Rn and 0 ∈ F (u), then ∥u∥Cα(B1) ≤ C, it

satisfies the nondegeneracy condition u(x) ≥ Cdist(x,F (u))α for x ∈ B1, the positive phase satisfies
the corkscrew condition, every blow-up limit is α-homogeneous, and the boundary condition in (1.2)
is satisfied at Fred(u).

Moreover, the positive phase {u > 0} ∩ B1 is a set of finite perimeter, the singular set is an
(n − 3)-rectifiable set, it is discrete whenever n = 3 and it is empty if n ≤ 2.

All the constants depend only on n and α.
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B Uniqueness of extensions

In Proposition A.1 we have used the following result, included in [CRS10b, Proposition 3.1]. Here
we provide a proof which is different than the one appearing in [CRS10b].

Proposition B.1. Let α ∈ (0,1), β = 1 − 2α, and set Lu = −div(∣y∣β∇u) in Rn+1. Suppose that

v ∶ Rn+1
+ → R is nonnegative outside Rn, it is a solution to Lv = 0 in Rn+1

+ with v(x′,0) = 0 for all
x′ ∈ Rn and ∣v(x)∣ ≤ C ∣x∣α. Then v ≡ 0.

Proof. First, since ∣y∣β is C∞ away from the hyperplane Rn, v ∈ C∞
loc(Rn+1

+ ). Let now i ∈ {1, . . . n},
and set

fm(x) =
v (x + 1

m
ei) − v(x)

1/m .

Let Br = Br(x′,0) be a ball centered at (x′,0) ∈ Rn × {0} with radius r, and let B2r be its double
ball. Set also w(x) = w(x′, y) = yβ for y > 0. Since fm is a solution of Lfm = 0 in B+

r = B ∩Rn+1
+ ,

[FKS82, Theorem 2.4.3] shows that

max
B+
r

∣fm(x)∣ ≤ C ( 1

w(B+
2r)

ˆ
B+

2r

∣fm∣2w)
1/2

.

From convergence of difference quotients (similarly to [Eva98, Theorem 3, page 277]), if v ∈
H1(β,B+

2r), the last estimate will imply that fm is uniformly bounded in B+
r by a constant Cr.

Therefore, from the boundary Caccioppoli estimate ([FKS82, (2.4.2)]) we have that

ˆ
B+
r/2

∣∇fm∣2w ≤ C

r2

ˆ
B+
r

∣fm∣2w ≤ C

r2

ˆ
B+
r

C2
rw ≤ Cn,r,w <∞,

hence {fm} is bounded in H1(β,B+
r/2). From weak compactness, a subsequence of {fm} converges

to a solution of Lu = 0 in B+
r/2, and since fm → ∂iv pointwise, we obtain that ∂iv is an H1(β,B+

r/2)
solution in B+

r/2. Hence ∂iv is a solution to Lu = 0 in Rn+1
+ .

Now, for x = (x′, y) ∈ Rn+1
+ , let R = ∣x∣. We distinguish between two cases: y > R/16, and

y < R/16.
In the first case, set BR to be the ball of radius R, centered at x. Note then that BR/16 ⊆ Rn+1

+ .
Then, from [FKS82, Theorem 2.3.1], Caccioppoli’s estimate and the assumption ∣v(x)∣ ≤ C ∣x∣α,

∣∂iv(x)∣2 ≤
C

w(BR/32)

ˆ
BR/32

∣∂iv∣2w ≤ C

w(BR/32)
C

R2

ˆ
BR/16

∣v∣2w ≤ C

R2

w(BR/16)
w(BR/32)

sup
BR/16

∣v∣ ≤ CR2α−2.

In the second case, let BR be the ball centered at (x′,0) with radius R, and denote B+
R = BR∩RN+1

+ .
Then x ∈ B+

R/8, therefore from [FKS82, Theorem 2.4.3] and the boundary Caccioppoli estimate,

∣∂iv(x)∣2 ≤
C

w(B+
R/8)

ˆ
B+
R/8

∣∂iv∣2w ≤ C

w(B+
R/8)

C

R2

ˆ
B+
R/4

∣v∣2w ≤ C

R2

w(B+
R/4)

w(B+
R/8)

sup
B+
R/4

∣v∣ ≤ CR2α−2.

So, in all cases, ∣∂iv(x)∣ ≤ C ∣x∣α−1. Letting R →∞ and using the maximum principle, we find that
∂iv = 0 for any i = 1, . . . n. Therefore v does not depend on the first n variables, so v(x′, y) = v(y).
Hence, in Rn+1

+ ,
0 = −div(yβ∇v(y)) = −∂y(yβv′(y)) ⇒ yβv′(y) = c̃,
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for some constant c̃. From [FKS82, Theorem 2.4.6], v is Hölder continuous up to the boundary,
therefore for any y > 0,

v(y) = v(y) − v(0) =
ˆ y

0

v′ =
ˆ y

0

c̃s−β ds = c̃

1 − β y
1−β ,

which implies that

∣c̃∣ = (1 − β)yβ−1∣v(y)∣ = (1 − β)yβ−1∣v(0, y)∣ ≤ (1 − β)yβ−1yα = (1 − β)y−α,

for any y > 0. Letting y →∞ we obtain that c̃ = 0, hence v′(y) = 0 as well, which implies that v is
a constant. Since v vanishes on Rn, this implies that v ≡ 0.
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