A Steepest Descent Method for the Approximation of the Boundary Control in Two-Phase Stefan Problem
Neittaanmäki, P., & Tiba, D. (1987). A Steepest Descent Method for the Approximation of the Boundary Control in Two-Phase Stefan Problem Mathematica - Revue d'analyse numérique et de théorie de l'approximation, 29 (2), 157-167.
Julkaistu sarjassa
Mathematica - Revue d'analyse numérique et de théorie de l'approximationPäivämäärä
1987Tekijänoikeudet
© Cluj-Napoca : Éditions de l'Académie Roumaine.
Julkaisija
Cluj-Napoca : Éditions de l'Académie RoumaineISSN Hae Julkaisufoorumista
1220-6016Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On the approximation of the boundary control in two-phase Stefan-type problems
Neittaanmäki, Pekka; Tiba, D. (Polish Academy of Sciences, 1987)The paper is concerned with boundary control of two-phase Stefan problems. A construction of optimal solutions, based on exploiting regularization techniques, is presented. Results of some numerical experiments are discussed. -
Optimal control for state constrained two-phase Stefan problems
Neittaanmäki, Pekka; Tiba, Dan (Birkhäuser, 1991)We give a new approach to state constrained control problems associated to non-degenerate nonlinear parabolic equations of Stefan type. We obtain uniform estimates for the violation of the constraints. -
A two-phase problem with Robin conditions on the free boundary
Guarino Lo Bianco, Serena; La Manna, Domenico Angelo; Velichkov, Bozhidar (Les Éditions de l'École polytechnique, 2021)We study for the first time a two-phase free boundary problem in which the solution satisfies a Robin boundary condition. We consider the case in which the solution is continuous across the free boundary and we prove an ... -
On the convergence of the finite element approximation of eigenfrequencies and eigenvectors to Maxwell's boundary value problem
Neittaanmäki, Pekka; Picard, Rainer (Suomalainen tiedeakatemia, 1981) -
Functional Type Error Control for Stabilised Space-Time IgA Approximations to Parabolic Problems
Langer, Ulrich; Matculevich, Svetlana; Repin, Sergey (Springer International Publishing, 2018)The paper is concerned with reliable space-time IgA schemes for parabolic initial-boundary value problems. We deduce a posteriori error estimates and investigate their applicability to space-time IgA approximations. ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.