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In this article we focus on inverse problems for a semilinear elliptic equation. We 
show that a potential q in Ln/2+ε, ε > 0, can be determined from the full and 
partial Dirichlet-to-Neumann map. This extends the results from [20] where this is 
shown for Hölder continuous potentials. Also we show that when the Dirichlet-to-
Neumann map is restricted to one point on the boundary, it is possible to determine 
a potential q in Ln+ε. The authors of [25] proved this to be true for Hölder continuous 
potentials.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

In this paper we consider an inverse problem of determining a potential in L
n
2 +ε, for positive ε, from the 

Dirichlet-to-Neumann (DN) map related to the boundary value problem for a semilinear elliptic equation

{
Δu + qum = 0, in Ω
u = f, on ∂Ω,

(1.1)
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where m ≥ 2, m ∈ N, and Ω ⊂ Rn open and bounded. This boundary value problem is well posed for 
q ∈ L

n
2 +ε(Ω) and a certain class of boundary values. In fact we show that there is δ > 0 such that for all 

(see [21] for Sobolev spaces)

f ∈ Uδ := {h ∈ W 2− 1
p ,p(∂Ω): ||h||

W
2− 1

p
,p(∂Ω)

< δ}

there exists a unique small solution u ∈ W 2,p(Ω) with sufficiently small norm. Here and in the rest of this 
article, we denote p := n

2 + ε. Thus the DN map can be defined as

Λq : Uδ → W 1− 1
p ,p(∂Ω), f �→ ∂νuf |∂Ω.

Our first main result shows that we can determine the potential from the knowledge of the DN map.

Theorem 1.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with C∞ boundary, ε > 0 and q1, q2 ∈ L
n
2 +ε(Ω). 

Let Λqj be the DN maps associated to the boundary value problems
{

Δu + qju
m = 0, in Ω

u = f, on ∂Ω,
(1.2)

for j = 1, 2, and assume that Λq1f = Λq2f for all f ∈ Uδ with δ > 0 sufficiently small. Then q1 = q2 in Ω.

This result is a special case of Theorem 1.2 but we give a proof because it is helpful for the other two 
main theorems of this paper. Also the proof of Theorem 1.1 gives a reconstruction formula for the potential 
q via the Fourier transform (see Corollary 3.1).

The proof Theorem 1.1 is quite similar as in [19] and it uses the method of higher order linearization 
first introduced in [18] and further developed in the works [9], [19]. The key ingredient in this proof is the 
following integral identity which characterizes the m-th order linearization of the DN map (DmΛq)0 at 0
[19, Proposition 2.2]:

∫
∂Ω

(DmΛq1 −DmΛq2)0(f1, . . . , fm)fm+1 dS = −(m!)
∫
Ω

(q1 − q2)vf1 · · · vfm+1 dx. (1.3)

Here vfk are solutions to Δvfk = 0 with boundary values vfk |∂Ω = fk. Using this integral identity together 
with a result on density of products of solutions eventually gives q1 = q2 in Ω.

Theorem 1.1 has been proved for Hölder continuous potentials in [9] and [19] but in this article we give 
a first result for a less regular potential (at least to the best of our knowledge). The difference is in proving 
that (1.2) is well-posed when the potential is in Lp(Ω) and defining the DN map as a map from Uδ to 
W 1− 1

p ,p(∂Ω).
In the linear case (Δ + q)u = 0, when n ≥ 3, a similar result for q ∈ L

n
2 (Ω) has been obtained in the 

works [23], [6] and in a more general Riemannian manifold setting in [8], where they used Lp Carleman 
estimates in their proof. The case q ∈ L

n
2 (Ω) is considered optimal in the sense of standard well-posedness 

theory and for the strong unique continuation principle [15]. There are also results when one assumes that 
q ∈ W−1,n(Ω), see for example [11]. When n = 2 the lowest regularity for the potential to have uniqueness in 
the inverse problem, at least to the best of our knowledge, is L 4

3 (Ω) [3]. The same result is true on compact 
Riemannian surfaces with smooth boundary [22]. In dimension two the unique continuation principle holds 
for potentials in Lp(Ω) where p > 1 (see for example [1], [2]).

In addition to the full data case, we consider some partial data results for the Schrödinger equation 
with unbounded potentials. In particular, let Γ be an open subset of the boundary ∂Ω. Define the partial 
Dirichlet-to-Neumann map for f ∈ Uδ, spt(f) ⊂ Γ, as
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ΛΓ
q f = ∂νu|Γ.

Then from the knowledge of this partial DN map it is possible to determine the potential.

Theorem 1.2. Let Ω ⊂ Rn, n ≥ 2, be a connected open and bounded set with C∞ boundary and let Γ �= ∅ be 
an open subset of the boundary ∂Ω. Let ε > 0, q1, q2 ∈ L

n
2 +ε(Ω) and ΛΓ

qj be the partial DN maps associated 
to the boundary value problems

⎧⎪⎨
⎪⎩

Δu + qju
m = 0, in Ω

u = 0, on ∂Ω \ Γ
u = f, on Γ

for j = 1, 2. Assume that

ΛΓ
q1f = ΛΓ

q2f

for all f ∈ Uδ with spt(f) ⊂ Γ, where δ > 0 sufficiently small. Then q1 = q2 in Ω.

When the potentials are assumed to be Hölder continuous, then this theorem has been proved in [17] and 
[20] using the method of higher order linearization, which we will also use. Here again the key ingredients 
are the integral identity (1.3) and a density result for solutions of the Laplacian [25] (see also [5, Section 
4]).

For the linear Schrödinger equation, partial data results with unbounded potentials have been proved 
only for special cases of partial data. When n ≥ 3, it is proved in [7] that from the knowledge of the partial 
DN map in a specific situation it is possible to determine a potential in L

n
2 (Ω). The authors use a method 

involving the construction of a Dirichlet Green’s function for the conjugated Laplacian. In a similar situation 
on a manifold setting, [26] shows that a potential in L

n
2 can be determined from a particular case of partial 

data. When n = 2 the best known result for the case of an arbitrary open subset of the boundary is for 
potentials in the Sobolev space W 1,p(Ω), for p > 2 [14].

For partial data results, there is still the case when we are restricted to only one point on the boundary. 
In the situation of Δu + qum with the potential q in Cα(Ω̄) this has been proved in [25] using the method of 
higher order linearization. Here we show that the same result holds even if we only assume that q ∈ Ln+ε(Ω)
for a positive ε.

Theorem 1.3. Let Ω ⊂ Rn, n ≥ 2, be a connected open and bounded set with C∞ boundary and let Γ �= ∅
be an open subset of the boundary ∂Ω. Suppose that μ �≡ 0 is a fixed measure on ∂Ω and let ε > 0. Assume 
that q1, q2 ∈ Ln+ε(Ω) satisfy

∫
∂Ω

Λq1(f) dμ =
∫
∂Ω

Λq2(f) dμ (1.4)

for all f ∈ Uδ with spt(f) ⊂ Γ, where δ > 0 sufficiently small. Then q1 = q2 in Ω. Thus when choosing 
μ = δx0 for some fixed x0 ∈ ∂Ω the condition

Λq1(f)(x0) = Λq2(f)(x0) for all f ∈ Uδ with spt(f) ⊂ Γ

gives q1 = q2 in Ω.

The proof of this theorem is very similar to the one in [25] and it uses heavily the identity (1.3) and a 
density result for solutions of the Laplacian [25].



4 J. Nurminen / J. Math. Anal. Appl. 523 (2023) 126962
It is an interesting question if in Theorems 1.1 and 1.2 it is enough to assume the potential q to be in 
L

n
2 (Ω) and if in Theorem 1.3 the potential q could be in Ls(Ω) for s = n or even s < n. The argument given 

for Theorems 1.1 and 1.2 fails when q ∈ L
n
2 (Ω) since the well-posedness (Theorem 2.1) relies on Sobolev 

embedding theorems that fail for the exponent n
2 . For Theorem 1.3 the restriction to s > n comes from 

Lemma 5.1 and that we again use Sobolev embedding theorems that do not work for the exponent n or 
exponents less than n.

The rest of this paper is organized as follows. In section 2 we prove the well-posedness of the boundary 
value problem (1.1). In sections 3 to 5 the proofs for Theorems 1.1, 1.2 and 1.3 are given.

Acknowledgments. The author was supported by the Finnish Centre of Excellence in Inverse Modelling and 
Imaging (Academy of Finland grant 284715). The author would like to thank the anonymous referee for 
helpful comments and Mikko Salo for helpful discussions on everything related to inverse problems.

2. Well-posedness

A short reminder for the reader that we denote here and in the rest of this article p := n
2 + ε.

Theorem 2.1. (Well-posedness) Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with C∞ boundary, ε > 0 and let 
q ∈ Lp(Ω). Then there exist δ, C > 0 such that for any

f ∈ Uδ := {h ∈ W 2− 1
p ,p(∂Ω): ||h||

W
2− 1

p
,p(∂Ω)

< δ},

there is a unique small solution uf in the class {v ∈ W 2,p(Ω): ||w||W 2,p(Ω) ≤ Cδ} of the boundary value 
problem

{
Δu + qum = 0, in Ω
u = f, on ∂Ω,

(2.1)

where m ∈ N and m ≥ 2. Moreover

||u||W 2,p(Ω) ≤ C||f ||
W

2− 1
p
,p(∂Ω)

,

and there are C∞ maps

S : Uδ → W 2,p(Ω), f �→ uf ,

Λq : Uδ → W 1− 1
p ,p(∂Ω), f �→ ∂νuf |∂Ω.

The proof uses the implicit function theorem between Banach spaces [24, Theorem 10.6 and Remark 
10.5] and is very similar to the one in [19, Proposition 2.1]. The difference here is that we replace Hölder 
spaces with Sobolev spaces and one needs to be careful with various embeddings for these spaces.

Proof. Let

X = W 2− 1
p ,p(∂Ω), Y = W 2,p(Ω), Z = Lp(Ω) ×W 2− 1

p ,p(∂Ω)

and F : X × Y → Z,

F (f, u) = (Q(u), u|∂Ω − f),
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where Q(u) = Δu + qum. Let us now show that F has the claimed mapping property. Since u ∈ W 2,p(Ω), 
this implies that u|∂Ω ∈ W 2− 1

p ,p(∂Ω) (see [21]) and Δu ∈ Lp(Ω). Hence we need to show that the term 
qum ∈ Lp(Ω). Since 2 

(
n
2 + ε

)
> n, then by the Sobolev embedding theorem [21] u ∈ C0,α(Ω̄), for 0 < α < 1, 

which is a subset of Ls(Ω) for every 1 ≤ s ≤ ∞. Now this implies

||qum||Lp(Ω) ≤ ||q||Lp(Ω)||um||L∞(Ω) ≤ ||q||Lp(Ω)
(
||u||L∞(Ω)

)m
< ∞

and thus qum ∈ Lp(Ω). Hence F has the claimed mapping property.
Next we want to show that F is a C∞ mapping. Since u �→ Δu is a linear map W 2,p(Ω) → Lp(Ω), it 

is enough to show that u �→ qum is a C∞ map W 2,p(Ω) → Lp(Ω). This follows since um is a polynomial. 
More precisely, let u, v ∈ W 2,p(Ω) and use the Taylor formula:

q(u + v)m =
m∑
j=0

∂j
u(qum)
j! vj +

1∫
0

∂m+1
u (q(u + tv)m)

m! vm+1(1 − t) dt

=
m∑
j=0

∂j
u(qum)
j! vj .

Now for ||v||W 2,p(Ω) ≤ 1 the above gives

∣∣∣∣∣
∣∣∣∣∣q(u + v)m −

m∑
j=0

∂j
u(qum)
j! vj

∣∣∣∣∣
∣∣∣∣∣
Lp(Ω)

= 0 ≤ ||v||k+1
W 2,p(Ω)

and thus the map u �→ q(x)um is Ck (in the sense of [24, Definition 10.2]) for all k ∈ N. Hence it is a C∞

map and F is also C∞.
Our aim is to use the implicit function theorem for Banach spaces to get a unique solution for the 

boundary value problem (2.1). Firstly, the linearization of F at (0, 0) in the second variable is

DuF |(0,0)(v) = (Δv, v|∂Ω),

which is linear and also F (0, 0) = 0. Secondly, DuF |(0,0) : Y → Z is a homeomorphism. To see this, let 
(φ, g) ∈ Z and consider the boundary value problem

{
Δv = φ, in Ω
v = g, on ∂Ω.

This problem has a unique solution for each pair (φ, g) (see for example [10, Theorem 9.15]), and thus 
DuF |(0,0) is bijective. We also have the estimate

||DuF |(0,0)(v)||2Z = ||Δv||2Lp(Ω) + ||v|∂Ω||2
W

2− 1
p
,p(∂Ω)

≤ M ||v||2W 2,p(Ω),

because the trace operator from W 2,p(Ω) to W 2− 1
p ,p(∂Ω) is bounded (see [21]). Hence DuF |(0,0) is also 

bounded and then the open mapping theorem (see e.g. [24, Theorem 8.33]) tells us that it is also a homeo-
morphism.

Now by the implicit function theorem [24, Theorem 10.6] there exists δ > 0, a neighborhood Uδ =
B(0, δ) ⊂ X and a C∞ map S : Uδ → Y such that F (f, S(f)) = 0 for ||f ||

W
2− 1

p
,p(∂Ω)

≤ δ. Now S is also 

Lipschitz continuous, S(0) = 0, S(f) = u and thus we have
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||u||W 2,p(Ω) ≤ C||f ||
W

2− 1
p
,p(∂Ω)

for C > 0. By redefining δ if necessary we have the estimates ||f ||
W

2− 1
p
,p(∂Ω)

≤ δ, ||u||W 2,p(Ω) ≤ Cδ and 

the implicit function theorem gives that u is the unique small solution of F (f, u) = 0. Also the solution 
operator S : Uδ → W 2,p(Ω) is a C∞ map. Because u ∈ W 2,p(Ω), then ∇u ∈ W 1,p(Ω). The trace operator 
is a bounded linear map from W 1,p(Ω) to W 1− 1

p ,p(∂Ω) (see [21]) and thus ∂νu ∈ W 1− 1
p ,p(∂Ω) is defined 

almost everywhere on ∂Ω. Hence Λq is a well defined C∞ map between Uδ and W 1− 1
p ,p(∂Ω). �

Remark 2.2. In the previous proof, we showed that the mapping DuF |(0,0) is bijective and bounded 
and deduced that it is a homeomorphism. An alternative way to see this is to look at the inverse map 
(DuF |(0,0))−1 : Z → Y and show that it is bijective and bounded. In order to do this, one needs to prove 
the following estimate:

||v||W 2,p(Ω) ≤ C

(
||φ||Lp(Ω) + ||g||

W
2− 1

p
,p(∂Ω)

)
,

where C > 0 does not depend on v, φ and g. This can be done for example by combining the estimate

||v||W 2,p(Ω) ≤ C

(
||φ||Lp(Ω) + ||g||

W
2− 1

p
,p(∂Ω)

+ ||v||Lp(Ω)

)

from [27, Theorem 9.1.3] with the assumption that 0 is not a Dirichlet eigenvalue and using a compactness 
argument.

3. Proof of Theorem 1.1

Using the method of higher order linearization we prove that it is possible to determine a potential in 
Lp(Ω) from the knowledge of full DN map.

Proof of Theorem 1.1. Let λ1, . . . , λm be sufficiently small numbers, λ = (λ1, . . . , λm) and f1, . . . , fm ∈
W 2− 1

p ,p(∂Ω). Let uj(x, λ) ∈ W 2,p(Ω) be the unique small solution to
{

Δuj + qju
m
j = 0, in Ω

uj =
∑m

k=1 λkfk, on ∂Ω.
(3.1)

Differentiating this with respect to λl, l ∈ {1, . . . , m} (possible by Theorem 2.1 which shows that S is a C∞

map) and setting λ = 0 gives that vlj := ∂λl
uj(x, λ)|λ=0 satisfies

{
Δvlj = 0, in Ω
vlj = fl, on ∂Ω.

(3.2)

This has a unique solution in W 2,p(Ω) (see for example [10, Theorem 9.15]) and thus we can define vl :=
vl1 = vl2. Also the first linearizations of the DN maps Λqj are the DN maps of the Laplace equation.

Let 1 < a ≤ m − 1 be an integer and l1, . . . , la ∈ {1, . . . , m}. Then the a-th order linearization of (3.1) is
{

Δ(∂λl1
· · · ∂λla

uj(x, λ)|λ=0) = 0, in Ω
∂λl1

· · · ∂λla
uj(x, λ)|λ=0 = 0, on ∂Ω,

and uniqueness of solutions for the Laplace equation gives that 0 is the only solution. Thus the a-th order 
linearizations of the DN maps Λqj are equal to 0.
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Moving to the m-th order linearization, we apply ∂λ1 · · · ∂λm
|λ=0 to (3.1) which results in the boundary 

value problem

{
Δwj = −m!qj

∏m
k=1 v

k, in Ω
wj = 0, on ∂Ω.

(3.3)

Here wj = ∂λ1 · · · ∂λm
uj(x, λ)|λ=0 and the functions vk, k ∈ {1, . . . , m}, are solutions to equation (3.2) with 

corresponding boundary values fk. On the left hand side of (3.3) we are only left with a product of functions 
vk, since after differentiating (3.1) m times with respect to ε, all other terms involve a positive power of uj . 
Proposition 2.1 says that the solution uj depends smoothly on ε and thus when evaluating at ε = 0, the 
function uj vanishes.

By our assumptions we have that Λq1 (
∑m

k=1 λkfk) = Λq2 (
∑m

k=1 λkfk) and thus ∂νu1|∂Ω = ∂νu2|∂Ω. 
Applying ∂λ1 · · · ∂λm

|λ=0 to this gives ∂νw1|∂Ω = ∂νw2|∂Ω. Subtracting (3.3) for j = 1, 2 and integrating 
against v ≡ 1 (a solution of (3.2)) over Ω implies

∫
Ω

m!(q1 − q2)
m∏

k=1

vk dx = −
∫
Ω

Δ(w1 − w2) dx = −
∫
∂Ω

∂ν(w1 − w2) dS = 0. (3.4)

Let us now choose v1, v2 to be the Calderón’s exponential solutions [4]

v1(x) := e(η+iξ)·x, v2(x) := e(−η+iξ)·x, (3.5)

where η, ξ ∈ Rn, η ⊥ ξ and |η| = |ξ|, and vk ≡ 1 for k = 3, . . . , m. Then we get that the Fourier transform 
of the difference q1 − q2 at −2ξ vanishes. Thus q1 = q2 since ξ was arbitrary. �

Notice that this proof gives a reconstruction formula for the potential. In particular, inspecting the last 
lines after equation (3.4) we have the following result which reconstructs the potential q via its Fourier 
transform.

Corollary 3.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded open set with C∞ boundary, ε > 0 and q ∈ Lp(Ω). Let Λq

be the DN map associated to the boundary value problem

{
Δu + qum = 0, in Ω
u = f, on ∂Ω.

Then, denoting λ = (λ1, . . . , λm),

q̂(−2ξ) = − 1
m!

∫
∂Ω

∂m

∂λ1 · · · ∂λm

∣∣
λ=0Λq

(
m∑

k=1

λkfk

)
dS,

where f1, f2 are the boundary values of Calderón’s exponential solutions (3.5), fk ≡ 1 for 3 ≤ k ≤ m and q̂
is the Fourier transform of q.

4. Proof of Theorem 1.2

We prove the partial data result for determining a potential in Lp(Ω) by using higher order linearization. 
The proof uses similar techniques as in [17] and [20].
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Proof of Theorem 1.2. Let λ1, . . . , λm be sufficiently small numbers, λ = (λ1, . . . , λm) and f1, . . . , fm ∈
W 2− 1

p ,p(∂Ω) with spt(f) ⊂ Γ. Let uj(x, λ) ∈ W 2,p(Ω) be the unique small solution to
{

Δuj + qju
m
j = 0, in Ω

uj =
∑m

k=1 λkfk, on ∂Ω.

The first and m-th order linearizations are the same as in the proof of Theorem 1.1, with corresponding 
boundary values. We also define vl := vl1 = vl2 by uniqueness of solutions to (3.2). Let v(0) be the solution 
to ⎧⎪⎨

⎪⎩
Δv(0) = 0, in Ω
v(0) = 0, on ∂Ω \ Γ
v(0) = g, on Γ,

where g ∈ C∞
c (Γ) with g non-negative and not identically zero. By the maximum principle, v(0) > 0 in Ω. 

Then subtracting (3.3) for j = 1, 2 and integrating against v(0) gives the following integral identity (compare 
to (3.4))

−
∫
Ω

m!(q1 − q2)v(0)
m∏

k=1

vk dx =
∫
Ω

Δ(w1 − w2)v(0) dx (4.1)

=
∫
Ω

(w1 − w2)Δv(0) dx

+
∫
∂Ω

v(0)∂ν(w1 − w2) − (w1 − w2)∂νv(0) dS

=
∫
∂Ω

v(0)∂ν(w1 − w2) − (w1 − w2)∂νv(0) dS

Here Green’s formula and the fact that Δv(0) = 0 in Ω were used. Now our assumption on the DN maps 
coinciding gives ∂νu1|Γ = ∂νu2|Γ and when applying ∂λ1 · · · ∂λm

|λ=0 to this, we have ∂νw1|Γ = ∂νw2|Γ. Also 
w1 − w2 = 0 on ∂Ω by (3.3) and v(0) = 0 on ∂Ω \ Γ. Using these (4.1) becomes

−
∫
Ω

m!(q1 − q2)v(0)
m∏

k=1

vk dx =
∫
∂Ω

v(0)∂ν(w1 − w2) − (w1 − w2)∂νv(0) dS (4.2)

=
∫

∂Ω\Γ

v(0)∂ν(w1 − w2) dS +
∫
Γ

v(0)∂ν(w1 − w2) dS

= 0.

Now we can apply Theorem 1.3 in [25] (see also [5, Section 4]) which says that the set of products of two 
harmonic functions that vanish on ∂Ω \ Γ is dense in L1(Ω). Thus we can conclude from (4.2) that

m!(q1 − q2)v(0)
m∏

k=3

vk = 0 in Ω.

Let fk ∈ C∞
c (Γ), fk non-negative and fk > 0 somewhere for k = 3, . . . , m. Then again the maximum 

principle gives that vk > 0 in Ω. Combining this with v(0) > 0 in Ω then implies q1 = q2 in Ω. �
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5. Proof of Theorem 1.3

As in [25], we need a lemma stating that the solution to the boundary value problem with a finite Borel 
measure μ as boundary value is in Lr(Ω) for 1 ≤ r < n

n−1 . For the lemma, denote by r′ the dual exponent 
of 1 ≤ r ≤ ∞.

Lemma 5.1. Let Ω ⊂ Rn, n ≥ 2 be a bounded open set with C∞ boundary and μ a finite complex Borel 
measure on ∂Ω. Then for the function

Ψ(x) =
∫
∂Ω

P (x, y) dμ(y), x ∈ Ω, (5.1)

where P (x, y) is the Poisson kernel for Δ in Ω, we have Ψ ∈ Lr(Ω), 1 ≤ r < n
n−1 . Additionally Ψ solves 

the boundary value problem

{
ΔΨ = 0, in Ω
Ψ = μ, on ∂Ω,

where Ψ = μ on ∂Ω means that for any w ∈ W 2,r′(Ω) with w|∂Ω = 0, in trace sense, one has

∫
∂Ω

∂νw dμ =
∫
Ω

(Δw)Ψ dx. (5.2)

Notice that the left hand side of relation (5.2) is well defined since ∂νw is continuous by the Sobolev 
embedding theorem (see for example [21]): The assumption w ∈ W 2,r′(Ω) says that ∇w ∈ W 1,r′(Ω). 
This space embeds to C0,1− n

r′ (Ω̄) if r′ > n. Notice that r′ > n is equivalent with the assumption that 
1 ≤ r < n

n−1 . Also the right hand side of (5.2) is well defined by the fact that Δw ∈ Lr′(Ω), Ψ ∈ Lr(Ω)
implies (Δw)Ψ ∈ L1(Ω).

The proof of this lemma is the same as in [25, Lemma 2.1.]. The only difference when compared to the 
statement in [25], is that we assume w ∈ W 2,r′(Ω) instead of w ∈ C2(Ω̄).

Proof of Theorem 1.3. As before, we use the method of higher order linearization. Let λ1, . . . , λm be 
sufficiently small numbers, λ = (λ1, . . . , λm) and f1, . . . , fm ∈ W 2− 1

p ,p(∂Ω) with spt(f) ⊂ Γ. Let 
uj(x, λ) ∈ W 2,p(Ω) be the unique small solution to

{
Δuj + qju

m
j = 0, in Ω

uj =
∑m

k=1 λkfk, on ∂Ω.

The first and m-th order linearizations are the same as in the proof of Theorem 1.1, with corresponding 
boundary values. We also define vl := vl1 = vl2 by uniqueness of solutions to (3.2).

Let ε > 0 and q1, q2 ∈ Ln+ε(Ω) be such that (1.4) holds for all f ∈ Uδ, spt(f) ⊂ Γ with sufficiently small 
δ. From ∂λ1 · · · ∂λm

Λqj (f) = ∂λ1 · · · ∂λm
∂νuj |∂Ω = ∂νwj |∂Ω, where wj is the solution to (3.3), and equation 

(1.4) we get that

∫
(∂νw1 − ∂νw2) dμ = 0.
∂Ω
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Let Ψ ∈ L(n+ε)′(Ω) be the function given by (5.1) which is a solution to
{

ΔΨ = 0, in Ω
Ψ = μ, on ∂Ω

in the sense of Lemma 5.1. Notice that (n + ε)′ < n
n−1 and wj ∈ W 2,n+ε(Ω) because −m!qj

∏m
k=1 v

k ∈
Ln+ε(Ω) (see for example [10, Theorem 9.15]). Thus combining (5.2) and (3.3) gives

0 =
∫
∂Ω

(∂νw1 − ∂νw2) dμ =
∫
Ω

Δ(w1 − w2)Ψ dx = −
∫
Ω

m!(q1 − q2)
m∏

k=1

vkΨ dx,

where each vk is a solution to the Laplace equation with corresponding boundary value fk. Let f3, . . . , fm ∈
C∞(∂Ω) be such that spt(fk) ⊂ Γ, fk ≥ 0 and fk > 0 somewhere, then by the maximum principle vk > 0 in 
Ω. Choosing the boundary values f1, f2 ∈ C∞(∂Ω), spt(f1), spt(f2) ⊂ Γ, we get by elliptic regularity that 
v1, v2 are smooth and thus we may apply Theorem 1.3 from [25] (see also [5, Section 4]) to get

m!(q1 − q2)v3 · · · vmΨ = 0 a.e. in Ω.

The positivity of v3, . . . , vm implies that (q1 − q2)Ψ = 0 a.e. in Ω. Now we claim that Ψ cannot vanish 
in any set E ⊂ Ω of positive measure. This can be seen as follows: We argue by contradiction and assume 
that Ψ = 0 in E ⊂ Ω where E has positive measure. Then by a unique continuation principle (see for 
example [12], n > 2, and for n = 2 [13]) Ψ = 0 in Ω. From [16] there is a constant c > 0 such that for all 
(x, y) ∈ Ω × ∂Ω

c · dist(x, ∂Ω)
|x− y|n ≤ P (x, y).

In view of the definition of Ψ in (5.1) this would imply that μ ≡ 0 which is a contradiction. Hence we must 
have that q1 = q2 a.e. in Ω. �
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