Näytä suppeat kuvailutiedot

dc.contributor.authorRahkonen, Samuli
dc.contributor.authorLind, Leevi
dc.contributor.authorRaita-Hakola, Anna-Maria
dc.contributor.authorKiiskinen, Sampsa
dc.contributor.authorPölönen, Ilkka
dc.date.accessioned2022-12-13T10:01:40Z
dc.date.available2022-12-13T10:01:40Z
dc.date.issued2022
dc.identifier.citationRahkonen, S., Lind, L., Raita-Hakola, A.-M., Kiiskinen, S., & Pölönen, I. (2022). Reflectance Measurement Method Based on Sensor Fusion of Frame-Based Hyperspectral Imager and Time-of-Flight Depth Camera. <i>Sensors</i>, <i>22</i>(22), Article 8668. <a href="https://doi.org/10.3390/s22228668" target="_blank">https://doi.org/10.3390/s22228668</a>
dc.identifier.otherCONVID_159522027
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84327
dc.description.abstractHyperspectral imaging and distance data have previously been used in aerial, forestry, agricultural, and medical imaging applications. Extracting meaningful information from a combination of different imaging modalities is difficult, as the image sensor fusion requires knowing the optical properties of the sensors, selecting the right optics and finding the sensors’ mutual reference frame through calibration. In this research we demonstrate a method for fusing data from Fabry–Perot interferometer hyperspectral camera and a Kinect V2 time-of-flight depth sensing camera. We created an experimental application to demonstrate utilizing the depth augmented hyperspectral data to measure emission angle dependent reflectance from a multi-view inferred point cloud. We determined the intrinsic and extrinsic camera parameters through calibration, used global and local registration algorithms to combine point clouds from different viewpoints, created a dense point cloud and determined the angle dependent reflectances from it. The method could successfully combine the 3D point cloud data and hyperspectral data from different viewpoints of a reference colorchecker board. The point cloud registrations gained 0.29–0.36 fitness for inlier point correspondences and RMSE was approx. 2, which refers a quite reliable registration result. The RMSE of the measured reflectances between the front view and side views of the targets varied between 0.01 and 0.05 on average and the spectral angle between 1.5 and 3.2 degrees. The results suggest that changing emission angle has very small effect on the surface reflectance intensity and spectrum shapes, which was expected with the used colorchecker.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesSensors
dc.rightsCC BY 4.0
dc.subject.otherhyperspectral
dc.subject.otherdepth data
dc.subject.otherkinect
dc.subject.othersensor fusion
dc.subject.otherreflectance
dc.titleReflectance Measurement Method Based on Sensor Fusion of Frame-Based Hyperspectral Imager and Time-of-Flight Depth Camera
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202212135584
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineComputational Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1424-8220
dc.relation.numberinseries22
dc.relation.volume22
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumberA77069
dc.subject.ysooptiset ominaisuudet
dc.subject.ysooptiset anturit
dc.subject.ysomittausmenetelmät
dc.subject.ysoreflektanssi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p25870
jyx.subject.urihttp://www.yso.fi/onto/yso/p14479
jyx.subject.urihttp://www.yso.fi/onto/yso/p20083
jyx.subject.urihttp://www.yso.fi/onto/yso/p38165
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/s22228668
dc.relation.funderCouncil of Tampere Regionen
dc.relation.funderPirkanmaan liittofi
jyx.fundingprogramERDF European Regional Development Fund, React-EUen
jyx.fundingprogramEAKR Euroopan aluekehitysrahasto, React-EUfi
jyx.fundinginformationThe work is related to the iADDVA—Adding Value by Creative Industry Platform project that has received funding from Council of Tampere Region (Decision number: A77069) and European Regional Development Fund React-EU (2014–2023) and Leverage from the EU 2014–2020. This project has been funded with support from the European Commission.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0