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Abstract: Hyperspectral imaging and distance data have previously been used in aerial, forestry, agri-
cultural, and medical imaging applications. Extracting meaningful information from a combination
of different imaging modalities is difficult, as the image sensor fusion requires knowing the optical
properties of the sensors, selecting the right optics and finding the sensors’ mutual reference frame
through calibration. In this research we demonstrate a method for fusing data from Fabry–Perot
interferometer hyperspectral camera and a Kinect V2 time-of-flight depth sensing camera. We created
an experimental application to demonstrate utilizing the depth augmented hyperspectral data to mea-
sure emission angle dependent reflectance from a multi-view inferred point cloud. We determined
the intrinsic and extrinsic camera parameters through calibration, used global and local registration
algorithms to combine point clouds from different viewpoints, created a dense point cloud and
determined the angle dependent reflectances from it. The method could successfully combine the 3D
point cloud data and hyperspectral data from different viewpoints of a reference colorchecker board.
The point cloud registrations gained 0.29–0.36 fitness for inlier point correspondences and RMSE was
approx. 2, which refers a quite reliable registration result. The RMSE of the measured reflectances
between the front view and side views of the targets varied between 0.01 and 0.05 on average and the
spectral angle between 1.5 and 3.2 degrees. The results suggest that changing emission angle has
very small effect on the surface reflectance intensity and spectrum shapes, which was expected with
the used colorchecker.

Keywords: hyperspectral; depth data; kinect; sensor fusion; reflectance

1. Introduction

Extracting meaningful information from a combination of different imaging modalities,
such as standard RGB images, hyperspectral data and depth maps produced by depth
perceiving cameras, is a demanding task. Fusing data of different types, volumes and
dimensions from varying sources and different sensors is a research area with a lot of
emerging new technologies and applications.

Image sensor fusion requires knowing the optical properties of the sensors, selecting
the right optics and the finding sensors’ mutual reference frame through calibration. In our
case, producing a hyperspectral point cloud also requires estimating the relative positions
and orientations of the cameras in the world by using registration algorithms.

Hyperspectral imaging (HSI) considers capturing images with specialized hyper-
spectral cameras. Each image pixel captures a spectrum of light and each wavelength is
captured with a narrow bandwidth. The spectral and spatial dimensions together can be
used to characterize and identify points of interest in the image [1].

Previously, depth sensing imaging technologies have shown their ability to add mean-
ingful information to improve, e.g., classification [2], robot navigation [3], and segmenting
regions of interest from images [3,4]. In this research, we are using Kinect V2 depth camera.
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Depth sensing cameras are able to capture depth maps where each pixel corresponds to
a distance.

We used Piezo-actuated metallic mirror Fabry–Pérot interferometer (FPI) hyperspectral
camera, which is a frame-based imager, developed at the Technical Research Centre of
Finland Ltd (VTT) [5]. It captures the scene by taking multiple frames and combining
them into a hyperspectral data cube with spatial and spectral dimensions. Each produced
pixel in the image corresponds to a mixed radiance spectrum of light, ranging from visible
light to infrared wavelengths, depending on the application and the camera. A common
quantity measured with these devices is the spectral reflectance of a material, defined as
the ratio of reflected and incident light per measured wavelength band.

Frame-based hyperspectral cameras produce an image from a static target without
moving the camera itself, as opposed to the whisk broom or push broom type of scan-
ners [6]. Using a frame-based imager makes it easier to fuse the sensor data to other similar
imaging modalities.

Hyperspectral imaging has been used in many fields. It can be used non-destructively
to conserve, preserve and research objects of our cultural heritage, such as art and historical
artifacts [6–8]. Many applications apply depth information to hyperspectral images in
long range imaging, such as in aerial imaging in forestry [9] and agricultural applications.
At close proximity, depth data of complex surfaces can be inferred through controlled
illumination of the target and photometric stereo imaging. Skin cancer diagnosis is one
medical imaging application of this setup employing a hyperspectral camera [10].

Depth imaging cameras have been used in the past to assist in segmenting objects
from the background. Adding depth to hyperspectral images could benefit, e.g., in in-
dustrial robot applications where the robot has to gather information, detect and plan
actions autonomously based on the sensory input. Example applications could be found
for perishable products, such as in automatic fruit inventory and harvesting robots [11].
Hyperspectral imaging has previously been applied for detecting injuries in fruits [12] and
with other horticultural products [13].

Combining 3D data from a Kinect V2 with hyperspectral images has previously been
done in [14]. The aim of the study was to improve the accuracy of reflectance measurements
for curved leaf surfaces by selecting a white reference measurement with the same height
and surface normal direction as the sample. This was done by building a white reference
library from measurements of a specially designed white reference sample, imaged with
the same setup as the leaves.

In [15], the authors developed a 3D multiview RGB-D image-reconstruction method
for imaging chlorophyl contents of tomato plants using a multispectral imager and Kinect
V2. The used hyperspectral camera employed an internal scanning mechanism where the
sensor is moved behind the optics. A plant was rotated around its axis while a Kinect
V2 and a hyperspectral camera captured depth images and multispectral images with
four selected wavelength bands. The data were used in analyzing spectral reflectance
variability from different view angles and to create chlorophyl contents prediction model.
The findings suggest that multiview point cloud model could produce superior plant
chlorophyl measurements compared to a single-view point cloud model. The camera sensor
fusion was carried out by an image registration technique based on Fourier transform,
phase correlation and a rotating electric turntable with visible sticker markers.

This research demonstrates a method for fusing frame-based hyperspectral camera
data with 3D depth data and an experimental application on how the depth augmented
hyperspectral data can be used for measuring angle-wise reflectance of a color checker
board. Comparing to the previous linescanner method described in [14], a frame-based
imager imposes many benefits in terms of the ease of imaging and portability; setting
up the system and capturing a scene does not require a moving linescanner. In our
experiment, we selected fitting optics and the calibration method considers common
reference points in calibration images and not the spectral domain, such as in the method
proposed by [15]. Our imager captured hyperspectral data cubes with 133 wavelength
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bands. We combined them with the estimated 3D surface normals of the target object and
calculated the emission angles.

Novelty of the study come from the camera fusion method of these types of cameras.
The findings, challenges and topics on how this kind of data could be utilized in future
research will be discussed. This kind of setup could potentially be used in, for example,
imaging and researching complex surfaces for material characterization, as well as in
specular reflection removal from spectra. In summary, this method provides technical
support for designing and implementing a system for hyperspectral 3D point cloud creation
and analysis.

2. Materials and Methods
2.1. Experimental Setup

The experimental setup consisted of a Fabry-Pérot interferometer (FPI) hyperspectral
camera, Microsoft Kinect V2 depth sensing camera, two halogen lights equipped with
diffusers, x-rite ColorChecker calibration board and a desk in a darkened room in Spectral
imaging laboratory at University of Jyväskylä. The Kinect was aligned on top of the
hyperspectral camera and attached and aligned using an assembly of a base, translation
rail and mounting brackets by Thorlabs, as seen in Figure 1.

Figure 1. The prototype FPI hyperspectral camera (below) and the Kinect (on top) used in
the research.

The experimental software for this study was written in Python 3.8 with OpenCV
computer vision, Open3D point cloud processing, and Numpy numerical libraries. The
software was targeted to work on Ubuntu Linux 20.04 LTS.

2.2. FPI Hyperspectral Camera

We used Fabry–Pérot interferometer (FPI) hyperspectral camera developed by VTT
Research Centre of Finland. The camera is an assembly of optics, an interferometer, filters,
and a machine vision sensor (Grasshopper3 USB3 GS3-U3-23S6C-C) with an RGB sensor.
It captures a hyperspectral data cube that has (x, y) spatial dimensions and a spectral
domain. The camera works by capturing multiple images and varying the interferometer
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settings between exposures. The Piezo-actuated interferometer consists of two metallic half-
mirrors whose separation can be controlled. A beam of light entering the system interferes
with itself as it reflects off the mirrors. Only integer multiples of certain wavelengths get
transmitted through the mirrors [16,17].

The hyperspectral camera uses high and low-pass filters to block the unwanted wave-
lengths of light. Our setup used 450 nm high-pass and 850 low-pass filters, and it was
calibrated to capture 80 raw bands from the calibrated 450–850 nm range. The spectral reso-
lution (full width half maximum, FWHM) varied from 8 to 25 nm. We used CubeView [18]
software to capture hyperspectral data cubes. The software converted the raw bands to
133 radiance bands using fpipy [19] Python library. The hyperspectral data were stored in
fpipy defined netcdf file format with 1920 × 1200 resolution. The file size of one data cube
was approximately 4.9 GB.

We aimed to capture sharp and evenly exposed images. Therefore, the aperture was set
small (f/8) to have a large depth of field and to minimize vignetting that would otherwise
show as a reduction in brightness towards the periphery of the image [20]. The exposure
time was set to 3 s per frame to counter small aperture size and underexposed images. The
total exposure time for the 80 frames of one hyperspectral image was then approximately
4 min.

2.3. Kinect V2

We used Microsoft Kinect V2 depth sensing camera for capturing depth maps of the
target. Kinect V2 works by illuminating the scene with infrared light and estimates the
distance to obstacles by time-of-flight (TOF) principle. The distance to obstacles is estimated
measuring the time it takes light to travel from the emitter back to the infrared camera [21].

We used Libfreenect2 [22] open source driver and a modified Python wrapper based
on [23]. The depth maps were captured with 512 × 424 resolution.

2.4. Cameras and Optics

Hyperspectral camera optics were selected to provide a similar field of view (FOV)
to the Kinect V2, using a 100 cm working distance (WD). Since Kinect’s horizontal and
vertical lens opening angles were 70 and 60 degrees, the horizontal and vertical FOV was
calculated as seen in Figure 2.

Maximum working
distance 100 cm

Vertical lens opening 
angle 60 °

Vertical   
FOV   
63 cm

Minimum working
distance 55 cm

IR  Vertical  
FOV  

115 cm

Maximum working
distance 100 cm

Minimum working
distance 55 cm

Horizontal lens opening 
angle 70 °

IR Horizontal  FOV 140 cm

IR Horizontal   
FOV 77 cm

Figure 2. The horizontal and vertical field of view were calculated based on the Kinect V2’s lens
opening angles, using 100 cm as a reference maximum working distance for the imaging setup.

The defined the required depth of field (DOF) of the target to be 45 cm (Figure 3), which
determined the maximum and minimum WDs to be 100 cm and 55 cm, respectively. The
resulting horizontal FOV at the minimum WD was 77 cm and 141 cm at the maximum WD.
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Spectral
Imager

Kinect V2

Target:  calibration checker board 
80 cm X 60 cm

Target imaging DOF 45 cm

Maximum working
distance 100 cm

Target horizontal FOV 77 cm

HSI Horizontal FOV 141 cm

Minimum working
distance 55 cm

Maximum working
distance 100 cm

Figure 3. Selecting optics for the target scene. A visualization of the imaging setup parameters for
achieving a similar vertical and horizontal field of view with HSI and Kinect V2 sensors.

The selected lens was Basler Standard Lens (C10-0814-2M-S f8mm) with C-mount. The
fixed focal length was 8.0 mm, and the resolution was 2 megapixels. With hyperspectral
camera sensor, the lens provided 141× 105 cm FOV, which is visualized with Kinect’s FOV
(140× 115) cm in Figure 4.

HSI Horizontal FOV 141 cm

H
SI

 V
er

tic
al

 F
O

V 
10

5 
cm

IR Horizontal  FOV 140 cm

IR
  V

er
tic

al
 F

O
V 

11
5 

cm

Figure 4. The hyperspectral camera lens provided a relatively similar vertical and horizontal field of
views (visualized in blue) than the Kinect V2, which is visualized using red color.

By placing the Kinect on top of the hyperspectral camera and adjusting the lenses’
outer surfaces to the vertically same level, we could capture hyperspectral and depth data
with relatively similar parameters (Figures 3 and 4). The HSI sensor was smaller than
an ideal sensor for the selected lens, but the possible vignetting effect was controlled by
adjusting the iris during the acquisition.

2.5. Spectral Point Cloud Generation

In order to combine the depth data and the spectral data from Kinect and the hyper-
spectral camera, we need to know intrinsic camera parameters and the extrinsic camera
parameters. They define the optical properties of the cameras, their relative positions and
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orientations to each other in the world. The data fusion of the two cameras was carried out
as follows: We estimated the global point coordinates seen by Kinect, transform them to
the viewpoint of the hyperspectral camera and project them onto its camera plane. Then
we match the projected points to the pixels on the hyperspectral camera plane to form the
spectral point cloud.

The definition of the camera matrix (also known as the camera intrinsic matrix) for
both Kinect and FPI hyperspectral camera is in Equation (1), where fx and fy are the
focal lengths in x and y directions. Correspondingly, cx and cy denote the principal point,
which means the optical center on the sensor perpendicular to the camera’s pinpoint. The
parameter S is the skew [24].

K =

 fx S cx
0 fy cy
0 0 1


3×3

(1)

We can calculate the world to image plane transformation with full-rank (4 × 4)
matrices (Equation (2)). Using full-rank matrices allows us to invert them and to calculate
the image plane to the world transformation [24].

u
v
1

1/z

 =
1
z

[
K 0
0 1

]
4×4

[
R T
0 1

]
4×4


xw
yw
zw
1

 =
1
z

[
K 0
0 1

]
4×4


xw
yw
zw
1

 (2)

The full-rank transformation matrix [R|T]4×4 can be omitted, because the skew S = 0
and the camera matrix is aligned with the world. The parameters xw, yw and zw are the
world coordinates for a point in the point cloud. On the camera sensor plane, u, v, and z
denote the camera coordinates.

The inverse camera matrix can be analytically calculated and it is defined in Equation (3).

K−1 =

1/ fx −S/( fx fy) (Scy − cx fy)/( fx fy)
0 1/ fy −cy/ fy
0 0 1

 (3)

Then the Kinect image plane to world transformation is defined as:
xw
yw
zw
1

 = z
[

K−1
kinect 0
0 1

]
4×4


u
v
1

1/z

 = z


1/ fx 0 −cx fy/( fx fy) 0

0 1/ fy −cy/ fy 0
0 0 1 0
0 0 0 1




u
v
1

1/z

 (4)

The projected coordinates from the world coordinates to the hyperspectral camera
plane can be calculated with the intrinsic camera parameters Khyper and the extrinsic
parameters [R|T]kinect→hyper. The extrinsic matrix defines the transformation between the
two camera locations and orientations with the rotation R and the translation T matrices.

The projection matrix of Kinect’s world coordinates to the hyperspectral camera plane
is defined in Equation (5).

Pkinect→hyper = Khyper
[
R3×3 T3×1

]
kinect→hyper (5)

The world coordinates are then projected on the hyperspectral camera sensor plane:u
v
1


hyper

=
1

zw
Pkinect→hyper

xw
yw
zw


kinect

(6)
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Pixels outside of the Kinect’s operational range were filtered out. Hyperspectral image
pixel matching is conducted by simply rounding the projected image plane coordinates to
nearest even integer pixel coordinates that fit inside the Kinect image plane. The spectral
point cloud is defined by (xw, yw, zw) coordinates and their matching 133 spectral bands.

The current point cloud file formats do not support storing more than three color bands.
Therefore, we defined a custom format using xarray [25] and netcdf [26] that contains the
spatial and spectral information, point normals, and other metadata, such as the band-wise
wavelengths. Xarray is a Python library that makes working with multi-dimensional data
arrays with different coordinate systems easier. Netcdf is a community standard for sharing
array-oriented scientific data.

2.6. FPI Hyperspectral Camera to Kinect Calibration

The intrinsic and extrinsic camera matrices can be inferred using a common and
known reference image pattern. In our case, we used a 9 × 6 checkerboard image with
45 mm square size printed on standard copying paper. We captured 33 calibration images
with both cameras while turning the image pattern in different angles along all axis and
keeping the camera position fixed. Figure 5 depicts the calibration setup.

Figure 5. The experimental calibration setup with the hyperspectral camera, Kinect, halogen diffusers,
and realignable checkerboard calibration pattern.

The FPI hyperspectral camera was configured to capture four images with different
interferometer settings per each calibration image position. That resulted in spectral images
with 8 wavelength channels. We produced the final calibration images by clipping the band
values within [0, µ + 10σ] range to remove any outliers, such as dead pixels, averaging the
bands, and normalizing them to gray scale to minimize spatial image noise. We normalized
Kinect’s IR images to [0, 255] range and used them as-is.

We used OpenCV’s findChessboardCorners function to automatically detect the
corners of the checkerboard in the images, cameraCalibrate function to estimate the
camera matrix (Equation (1)) parameters for both cameras and stereoCalibrate functions
for estimating the extrinsic matrix between the two camera locations and positions with
their previously determined optical properties. The resulting intrinsic parameters are listed
in Table 1.
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Table 1. The estimated intrinsic parameters of the cameras during the calibration.

Intrinsic Parameter Kinect V2 FPI Hyperspectral Camera

fx 366.261 1382.955
fy 366.465 1383.227
cx 255.923 1002.023
cy 206.977 601.358

2.7. Point Cloud Registration

We used Open3D point cloud processing libraries to infer the spatial transformations
between point clouds. Our experiment included five point clouds that were captured by
moving the hyperspectral camera and Kinect around the target object. The point cloud of
the center-most camera position was used as the target for aligning the other point clouds,
which will be referred as the source point clouds.

The point clouds had to be preprocessed to filter out excessive noise. Outliers in the
point clouds were identified and removed statistically based on the average distance in a
neighborhood of points, as shown in Figure 6.

Figure 6. Visualization of the outlier removal for the point cloud in the middle camera viewpoint.
The points highlighted with red were removed.

Aligning two point clouds without prior information on their initial pose in space was
achieved by using global and local registration algorithms. We computed pose-invariant
FPFH features (Fast Point Feature Histograms) [27] which represent the surface model
properties around each point. Using FPFH speeds up the global point cloud registration
significantly compared to genetic and evolutionary algorithms [27]. We downsampled
the point clouds with 15 mm voxel size and estimated the point normals for each point
cloud, as FPFH relies on the 3D coordinated and estimated surface normals. Open3D
estimates vertex normals by calculating principal axis of the adjacent points over the closest
neighboring points.

Figure 7 illustrates the registration steps. We used RANSAC [28] for the global
registration. RANSAC works by picking random points from the source point cloud
and finding their corresponding points in the target point cloud by querying the nearest
neighbors in the FPFH feature space. A pruning step rejects false matches early. We
experimentally set RANSAC pruning algorithm’s correspondence distance threshold (the
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distance between two aligned point) to 75 mm. The algorithm’s correspondence edge
length was set to 0.9. It is a threshold for checking that any two arbitrary corresponding
edges (line between two vertices) in the source and target point clouds are similar. The
RANSAC convergence criteria was set to 400,000 iterations and 0.999 confidence.

(a) (b) (c)

Figure 7. Visualizations of the registration of two point clouds, one shown in blue and one in
yellow: (a) The point clouds before realignment, (b) after global registration, and (c) the refined
local registration.

The next step is the local refinement with the point-to-plane ICP (Iterative Closest
Point) [29] registration algorithm. We used the original outlier-filtered point clouds without
downsampling and the rough transformation results from RANSAC to further refine the
alignment. Figure 8 shows the fully registered point cloud with pseudo coloring and the
camera viewpoints.

Figure 8. The fully registered point cloud with pseudo RGB coloring and the visualizations of camera
capture viewpoints.

ICP produces the extrinsic transformation matrices to integrate each point cloud to
the viewpoint of the central camera position. The transformation matrices also gives us
the positions and orientations of each camera in relation to the central camera. We can use
them later to calculate the emission angles.
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2.8. Calculating Point Normals

The next step is to calculate corresponding point normals for each point in the point
cloud. Normals are needed to calculate the emission angles relative to the camera positions.
We used Open3D’s Poisson surface reconstruction method [30] to fit a surface on the point
cloud. Open3D offers functions to calculate point normals using its adjacent points. The
reconstruction algorithm allows defining the depth of the underlying octree data structure.
It controls the resolution of the resulting triangle mesh. We set the depth to 7, because
the noise could create steep angles on flat surfaces. We applied Taubin smoothing [31] to
further smoothen the fitted surface. The produced mesh is presented in Figure 9a.

(a) (b)

Figure 9. (a) The fitted mesh on the fully registered point cloud with Taubin smoothing. (b) Visual-
ization of the mesh triangles (red) and the points point cloud (purple) with the recalculated surface
normals (black).

We assigned the normals of the closest mesh triangles to the points of the point cloud
using Open3D’s ray casting functions. Figure 9b illustrates a downsampled view of the
new point normals showing how flat surfaces have relatively uniform normal directions.

2.9. Calculating Emission Angles

The emission angle α is the angle at which the reflected and transmitted light are
received at the detector. Defining the emission angle at the surface point p then comes
down to calculating the cosine between the surface normal and the vector at the direction
of camera from the point p, as illustrated in Figure 10a.

The relative camera position ~o is acquired from the world camera translation we
estimated during the registration. The translation vector T needs to be negated, because the
original world-to-world transformations are defined towards the origin, the middle camera:

~o = (−Tx,−Ty,−Tz) (7)

The emission angle α at the point ~p can be calculated as the dot product of the normal
vector~n and the vector~q pointing from the point ~p towards the capturing camera position~o:

~q =~o− ~p (8)

α = cos−1
(

~n ·~q
‖~n‖‖~q‖

)
(9)

The resulting emission angle is defined in [0, 90] degree range. Our camera is only
moved in xz-axis and the position in y axis is kept relatively fixed with approximately
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2 cm variation between capture positions. Therefore, we calculate the signs of the emission
angles to have [−90, 90] degree range. We split the space with vertical plane along the
direction of the point normal~n and the y axis.

αsigned = α sign((~n×~y) ·~q) (10)

The sign of the dot product between the splitting plane and camera pointing vector~q
determines on which side of the plane point ~p is located. Figure 10b depicts the splitting
plane and the related vectors. Equation (10) gives us the signed emission angle.

q⃗

n⃗

α

o1

o2

p

x

y

(a)

n⃗

q⃗

y⃗

p

x

y

z

(b)

Figure 10. (a) Emission angle calculation for the point p. (b) Illustration of the vertical plane that
splits the space along the direction of the point normal and the y axis. It is used for determining the
sign of the emission angle.

2.10. Reflectance and Its Angular Dependence

Reflectance is defined as a material’s ability to reflect incoming electromagnetic radia-
tion. Reflectance is a unitless quantity between zero and one; a material with reflectance
of one will reflect all radiation incident on it, and a material with reflectance of zero will
not reflect anything. In this work, the quantity of interest is spectral reflectance, a set
of reflectances each corresponding to a wavelength channel. In addition to wavelength,
reflectance can depend on the directions of incident and reflected light [32].

Reflection can be divided into specular reflection from an optically smooth surface,
such as a mirror, and diffuse reflection from a rough surface such as soil. Reflections from
real surfaces are often a mix of these two. For example, a body of water will reflect the
image of a light source in one direction, and in another direction appear the color of the
solids suspended in the water [32].

The simplest analytical expression for reflection from diffuse surfaces is known as
Lambert’s law. The law is based on the observation that the apparent brightness of a surface
is independent of the angle it is viewed from. Lambert’s law states that the only directional
dependence to the intensity of reflected light comes from the incidence angle, as this affects
the intensity of incident light. Although the reflections of real surfaces are not perfectly
Lambertian, some bright surfaces come close [32].

To find the spectral reflectance of a surface, one must quantify both the light reflected
from the surface and the light arriving to it. This is often done by measuring the unknown
surface along with a standard that has known reflectance properties. If the standard is
assumed to be perfectly white, i.e., it reflects all light arriving to it in the wavelength region
of the measurement, the spectral reflectance R is given by:

R =
I

Iwhite
, (11)
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where I is the spectral radiance reflected from the target, and Iwhite is the spectral radiance
reflected from the white reference target [32]. A similar approach was taken to calculate
spectral reflectance from our measurements. The used hyperspectral camera recorded a
spectral radiance I for each of its pixels. A white reference measurement was made by
placing a block of Spectralon [33] reference material in the imaged scene. Spectralon is a
common reflectance standard that is highly reflecting and diffuse in our spectral range ex-
tending from visual wavelengths to the shorter end of near-infrared. The reference radiance
Iwhite was calculated by averaging the spectral radiance over the reference target area.

The lamps used to illuminate the scene were positioned and aligned on both sides of
the camera so that the specular reflections were minimized to the front view of the color
checker board. With this lighting geometry, the measured reflectances should show higher
values when the target was imaged at a side view. The target is expected to have a specular
reflection component in its reflection.

3. Results

Figure 11 depicts the measurement results for each tile in the color checker. Each tile
has been measured with the experimental setup from five different angles and their average
spectra were plotted in the top and the intensity histograms, the band-wise sum of the
reflectances, per emission angle on bottom, respectively. Each tile was cropped by hand
from the fully registered point cloud.

The tiles on the color checker board in Figure 12 correspond to the plots in Figure 11.
The measured emission angles on the checker board varied between−28 and 22 degrees. The
results verify that the color checker tiles are mostly diffuse surfaces and the emission angle
has little effect to the intensity. Some liminal intensity attenuation can be observed around
zero emission angle. This is expected as the positioning of the lamps cause the front view
have dimmer illumination. The side views receive more light due to specular reflections.

In Figure 11, the red plots illustrate the average measured spectrum from the front
view. It represents the spectrum of the original hyperspectral image without emission
angle information. The blue plot is the average over all measurements in different angles.
The gray color in the plots illustrates the band-wise standard deviation. Some color tiles
showed larger band-wise intensity fluctuations. More fluctuations are observed at the last
bands. This may due to the fact that this type of camera has previously been observed
to produce noise in large wavelengths. However, we can see more deviance depending
on the tile color. For example, the most reflective tile s (white) shows more noise than the
darker toned tiles t–x. In tiles c, f, and r we noticed fluctuations in the smaller wavelengths,
and for j, l, o, and p in the middle wavelengths. Common for all the noisiest wavebands is
that they all share large intensity values. The red plots shows that for most of the colors,
the spectrum does not change much between different views, as could be seen from the
intensity histograms as well. The results suggest that the spectra from different angles are
similar as in the original front view hyperspectral image.

In Table 2, we list the RMSE (root mean squared error) values and their standard
deviations for each tile. The errors are calculated between the mean spectra of the central
camera view and the spectra from other view positions. The point of this measurement is to
quantify how much the emission angle affects the measured spectra. The deviation values
ranged from approximately 0.01 to 0.05, which can be regarded as small, as could be stated
based on the intensity histograms. We used cosine, sometimes called the spectral angle [34]
in the spectral domain, to measure the differences in spectrum shape. The differences are
between 1.5 and 3.2 degrees, which would refer to emission angle having little effect on the
shape of the spectrum with these targets.
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Figure 11. The average spectra and the intensity histograms of each matching color tile (a–x) of the
reference color checker in Figure 12. The average spectra of all measurements are plotted on top in
blue, the front view average spectrum is plotted in red and the intensity histograms, the band-wise
sum of the reflectances, per emission angle are on the bottom. The sample count per a histogram bin
is displayed in white. The gray color in the top plots illustrate the band-wise standard deviations.
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Figure 12. The color checker board used for calculating the result reflectances. Letters a–x correspond
to each tile and a result plot in Figure 11.

Table 2. Root mean squared differences and spectral angles (cosine) of measured spectra for each
corresponding color checker tile, in Figure 12, compared to the averaged front view spectrum from
central camera position.

a b c d e f g h i j k l

RMSE 0.0248 0.0427 0.0493 0.0125 0.0301 0.0339 0.0273 0.0219 0.0474 0.0222 0.0316 0.0413
std 0.0039 0.0093 0.0136 0.0004 0.0050 0.0069 0.0039 0.0029 0.0133 0.0028 0.0065 0.0105
cos 2.4171 1.5101 2.4386 2.1830 1.7203 1.7153 1.5530 1.7175 1.7402 1.5635 1.6439 1.4640
std 1.5109 0.8921 1.8757 0.4083 0.9819 1.2294 0.7569 0.8792 1.8425 0.5303 1.1196 0.8974

m n o p q r s t u v w x

RMSE 0.0259 0.0121 0.0397 0.0416 0.0313 0.0311 0.0338 0.0200 0.0121 0.0145 0.0108 0.0096
std 0.0035 0.0011 0.0097 0.0081 0.0067 0.0058 0.0047 0.0016 0.0003 0.0008 0.0003 0.0006
cos 2.8011 1.9333 1.6055 1.4051 1.3058 2.4644 1.2502 1.3298 1.5481 1.9872 2.5215 3.1784
std 2.4471 0.6890 1.2743 0.9680 0.6200 2.2738 0.8716 0.5919 0.2548 0.3869 0.4246 0.9830

We kept the lighting setup fixed and, as seen from the results, we observed only
small fluctuations in the intensity values while moving the camera. Based on a visual
inspection the colorchecker board appeared diffuse, and, as such, could be approximated as
Lambertian. The intensity of light reflected from Lambertian surfaces is not dependent on
the emission angle and, thus, we would expect to see no variation in intensities measured
from different angles. The results of the experiment are in line with this expectation.

In Table 3, we list registration errors of the individual point clouds that were used for
creating the final dense point cloud. The correspondence set size is the number of point
pairs that have correspondence to each each other in the source and target point clouds. The
fitness is the number of inlier correspondences divided by the number of points in the target
point cloud. A larger value is better and it means that the point clouds have more overlap.
The RMSE (root mean squared error) is calculated over all the inlier correspondences. Each
pruned point cloud had approximately 140,000 points. The quite high correspondence set
size (approx. 40,000–50,000) and fitness (0.29–0.36) values suggest that the registered point
clouds had a lot of overlap which made the resulting registration quite reliable as we can
visually confirm on the resulting full point cloud in Figure 8. However, we can see some
off-alignment on the checkerboard.
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Table 3. The refined local registration errors of the listed source point clouds (side views) to the target
camera position (center).

Viewpoint Fitness Inlier RMSE Correspondence Set Size

Left 0.356 1.975 50,192
Left-most 0.296 1.989 41,620

Right 0.358 2.005 49,098
Right-most 0.2901 2.002 40,006

4. Discussion

Figure 8 illustrates the final point cloud with pseudo coloring. Due to inaccuracies in
the Kinect-to-FPI hyperspectral camera calibration, some transformations are off by 1–2 cm
at most. The most significant error source was the sub-optimal mounting of Kinect. Small
deviations in the orientation between the two cameras caused large errors in extrinsic pa-
rameter calculations, as the camera had to be moved to capture images on multiple angles.

Originally, the hyperspectral camera used optics that had a small field of view, for
which OpenCV could not satisfactorily solve the extrinsic parameters. Therefore, we
selected lens that matches closely the field of view of Kinect. The calibration would have
benefited from averaging multiple infra-red pictures from the Kinect to reduce noice.

We observed that the point clouds captured by Kinect gauged depth values depending
on the brightness of the target, darker areas gaining shorter distances than the brighter
areas. This is especially visible in the checkerboard pattern in Figure 7c. The intensity
related error is known to occur with Kinect V2 [35]. We fitted a mesh on the plane and
recalculated the point normals to diminish these alterations to the emission angles of the
spectra. One future improvement would be matching the point cloud normals by ray
tracing and finding the intersecting mesh triangles.

Looking at Figure 11, we see a spike in the average spectra around infrared range. This
is expected as the Kinect V2 illuminates the scene and it is detected by the hyperspectral
camera. This should be taken into account when using this kind of time-of-flight depth
camera, if the application operates around these wavelengths.

To incorporate more accurate and dense spectral point cloud, using the rest of the
spectra in hyperspectral data cubes should be considered. In the presented implementation,
only the closest spatially matching spectra in the Kinect’s perspective were considered and
the rest were pruned.

A previous study by [14] showed how linescanner hyperspectral camera and Kinect
V2 can be used to create a 3D white referencing library which offers tilt angle specific white
references for hyperspectral calibration. The motivation of the study was to improve the
calibration of soy bean leaf images. The authors used a ball shaped white reference in
creating the 3D white referencing library, which is something we should consider using in
our emission angle dependent reflectance measurements. The authors detected a significant
difference at the angled reflectance calibration compared to a flat reference. We used an
averaged white reference spectrum from a flat reference object over multiple angles. In
the study, the authors envisioned using LiDAR sensors in 3D scanning and use it in field
environments. The strength of LiDAR is in long distance applications. The presented
method should work in mid-range complex surface imaging applications and be more
portable in comparison.

Future research topics would include fitting a model, such as a neural network, with
the data produced by the system and use it to interpolate the emission angle dependent
reflectance of glossier materials. Using a lighting setup, such as the one presented in this
research, we could potentially infer the reflectance at an emission angle where specular
reflections are minimized. Specular reflections occur on glossy surfaces.

Exchanging the two light sources of the experimental setup for just one with a collimated
output and tracking the relative position of the camera system and the light source would
allow inferring the incidence angle of light from the 3D point cloud. With both incidence
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and emission angles and spectral data recorded for each pixel of the hyperspectral image,
the method could be used to measure a spectral version of the bidirectional reflectance
distribution function (BRDF). BRDF is a reflectance quantity that is related to the changes in
reflectance with different incidence and emission angles of light. BRDF can be used for material
characterization and, for example, producing digital textures. Typically measurements of
this quantity for a sample require maneuvering either a light source and a detector [36] or
the sample itself [37] to accurately to measure it with a series of incidence and emission
angles. With the setup described in this study, including the light source upgrade, one could
determine the BRDF of a material with very few measurements taken of a rounded sample.
The curved surface would include a wide array of incidence and emission angles, possibly
enough to construct a spectral BRDF for a material from just one capture.

5. Conclusions

We demonstrated a sensor fusion method for combining data from frame-based
hyperspectral and a depth camera. We created an experimental application on how to
utilize the depth augmented hyperspectral data to measure emission angle dependent
reflectance from a multi-view inferred point cloud.

The method could successfully combine the 3D point cloud data and hyperspectral
data from different viewpoints. The calculated angle dependent reflectance results refer
that the target color checker board has Lambertian surface properties. The significance
of this study is in the remarks and implementation details of designing a system for an
imaging application augmenting frame-based hyperspectral data with time-of-flight depth
camera data, as well as in the future research ideas we presented in the discussion chapter.
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8. Sandak, J.; Sandak, A.; Legan, L.; Retko, K.; Kavčič, M.; Kosel, J.; Poohphajai, F.; Diaz, R.H.; Ponnuchamy, V.; Sajinčič, N.; et al.
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