University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Nanodevices by DNA based gold nanostructures

Thumbnail
View/Open
14. Mb

Downloads:  
Show download detailsHide download details  
Published in
Research report / Department of Physics, University of Jyväskylä
Authors
Tapio, Kosti
Date
2017
Discipline
Fysiikka

 
In this thesis DNA based structures were utilized to create gold nanostructures for nanosensing and nanoelectronic applications. In the past, both of these fields have been dominated by the conventional lithography methods, e.g., electron beam lithography and UV-lithography, but more recently scaling down the components by these techniques has become increasingly more complex and costly. Especially in the micro- and nanoelectronics, the increase in the component density and thus computational power would require fabrication of sub-10-nm components, which is challenging for the top-down approaches. Aforementioned developments have led researchers to seek alternative methods to fabricate these components using so-called bottom-up approaches, that could offer less complex, faster and cost-efficient ways to fabricate the desired structures. Two of the most promising candidates for this task have been the deoxyribonucleic acid and metallic nanoparticles due to their unique optical, mechanical and chemical properties, which allow almost seamless interfacing between the two, yet still incorporate their essential optical and electrical properties, that is typically more difficult to achieve using other pairs of organic and inorganic compounds. Three distinct fabrication methods were investigated to create three different nanodevices. The new DNA assisted lithography method was used to create meta- surfaces covered with arbitrary, highly defined metallic shapes, e.g., nanoantenna bowties. The more traditional hybridization based patterning of gold nanoparticles on DNA template was used to create DNA and gold nanoparticle assemblies, which applicability as a single electron transistor was demonstrated. Finally, DNA and gold nanoparticle based assembly was utilized as an electric field controllable probe to investigate the folding and unfolding properties of a hairpin-DNA molecule. Metallic bowtie antennas have interested researchers due to the high field enhancement between the two triangles, which could be used in e.g. surface-enhanced Raman spectroscopy. However, the current fabrication techniques have been mostly limited to infrared region due to the size and shape restrictions. By using dark field microscopy, we have showed that the new fabrication method is able to produce highly defined structures in a wafer scale and having their desired optical properties at visible regions even on high-refractive index substrates, where both of the features have not been feasible to accomplice before. Single stranded DNA functionalized gold nanoparticles are one of the standard tools to develop nanoscale applications, from nanopatterning to diagnostic detection. Functionalization scheme using DNA and AuNPs was utilized to fabricate two vastly different assemblies: pearl-like, three gold nanoparticle linear chain on DNA template and AuNPs coated with biotinylated DNA strands, which were further immobilized to chimeric avidin coated gold surface via strong biotin-avidin interaction. For the former case, dielectrophoresis trapping was employed to position these pearl-like DNA-AuNP assemblies between a fingertip electrode structure for current-voltage characterization. It was observed that the plain, pearl-like DNA-AuNP assemblies did not conduct a current, which was most probably due to too large air gaps between the AuNPs. Thus the structures were extruded larger by chemical gold growth process. After that the current started to flow when a threshold voltage was reached, i.e, where after the Coulomb blockade was observed for a few samples from 4.2 K up to room temperature. For the latter case, the sandwich assembly of gold surface-avidin-DNA-AuNP was used to study the conformational changes of a hairpin-DNA by electric field induced motion of the AuNP, where the motion of gold nanoparticles either caused the DNA to stretch and unfold or relax and fold back. ...
Publisher
University of Jyväskylä
ISBN
978-951-39-7308-7
ISSN Search the Publication Forum
0075-465X
Contains publications
  • Artikkeli I: Tapio, K., Leppiniemi, J., Shen, B., Hytönen, V. P., Fritzsche, W., & Toppari, J. (2016). Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure. Nano Letters, 16(11), 6780-6786. DOI: 10.1021/acs.nanolett.6b02378
  • Artikkeli II: Tapio, K. and Toppari, J. (2017). Characterization of Emergence of the Coulomb Blockade in a Pearl-Like DNA-AuNP Assembly. Journal of Self-Assembly and Molecular Electronics (SAME), 5. 31-44. DOI: 10.13052/jsame2245-4551.5.003
  • Artikkeli III: Shen, B., Linko, V., Tapio, K., Kostiainen, M. A., & Toppari, J. (2015). Custom-shaped metal nanostructures based on DNA origami silhouettes. Nanoscale, 7(26), 11267-11272. DOI: 10.1039/C5NR02300A
  • Artikkeli IV: Shen, B., Linko, V., Tapio, K., Pikker, S., Lemma, T., Gopinath, A., Gothelf, K. V., Kostiainen, M. A., & Toppari, J. (2018). Plasmonic nanostructures through DNA-assisted lithography. Science Advances, 4(2), Article eaap8978. DOI: 10.1126/sciadv.aap8978
  • Artikkeli V: Tapio, K., Shao, D., Auer, S., Tuppurainen, J., Ahlskog, M., Hytönen, V. P., & Toppari, J. (2018). A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field. Nanoscale, 10(41), 19297-19309. DOI: 10.1039/C8NR05535A
Keywords
DNA self-assembly hairpin-DNA origami TX-tile structure DNA hybridization gold nanoparticles functionalization surface plasmon chimeric avidin biotin immobilization electrostatic manipulation nanoactuator dark field microscopy single electron transistor Coulomb blockade differential conductance nanorakenteet nanoelektroniikka nanohiukkaset kulta optiset ominaisuudet sähköiset ominaisuudet transistorit anturit
URI

http://urn.fi/URN:ISBN:978-951-39-7308-7

Metadata
Show full item record
Collections
  • Väitöskirjat [3178]

Related items

Showing items with similar title or keywords.

  • Metallic Nanostructures Based on DNA Nanoshapes 

    Shen, Boxuan; Tapio, Kosti; Linko, Veikko; Kostiainen, Mauri A.; Toppari, Jussi (MDPI AG, 2016)
    Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, ...
  • Applications of DNA self-assembled structures in nanoelectronics and plasmonics 

    Shen, Boxuan (University of Jyväskylä, 2018)
    In this thesis, the potential applications of DNA self-assembled structures were explored in both nanoelectronics and plasmonics. The works can be divided into two parts: electrical characterization of unmodified multilayered ...
  • Optical properties of conductive carbon-based nanomaterials 

    Isoniemi, Tommi (University of Jyväskylä, 2016)
    The interaction of light with carbon nanomaterials is the main focus of this thesis. I explore several nanostructured systems involving different allotropes of carbon, and characterize them both electrically, if applicable, ...
  • Experimental study of electron transport in mesoscopic carbon based nanostructures 

    Mtsuko, Davie (University of Jyväskylä, 2012)
    In this thesis we have studied experimentally electronic transport in mesoscopic hybrid polypyrrole-gold devices and single multiwalled carbon nanotube devices. A novel fabrication technique for mesoscopic conducting ...
  • Dipolar coupling of nanoparticle-molecule assemblies : an efficient approach for studying strong coupling 

    Fojt, Jakub; Rossi, Tuomas P.; Antosiewicz, Tomasz J.; Kuisma, Mikael; Erhart, Paul (American Institute of Physics, 2021)
    Strong light–matter interactions facilitate not only emerging applications in quantum and non-linear optics but also modifications of properties of materials. In particular, the latter possibility has spurred the development ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre