Näytä suppeat kuvailutiedot

dc.contributor.authorPiccolotto, Nikolaus
dc.contributor.authorBögl, Markus
dc.contributor.authorGschwandtner, Theresia
dc.contributor.authorMuehlmann, Christoph
dc.contributor.authorNordhausen, Klaus
dc.contributor.authorFilzmoser, Peter
dc.contributor.authorMiksch, Silvia
dc.date.accessioned2022-12-02T09:06:48Z
dc.date.available2022-12-02T09:06:48Z
dc.date.issued2022
dc.identifier.citationPiccolotto, N., Bögl, M., Gschwandtner, T., Muehlmann, C., Nordhausen, K., Filzmoser, P., & Miksch, S. (2022). TBSSvis : Visual analytics for Temporal Blind Source Separation. <i>Visual Informatics</i>, <i>6</i>(4), 51-66. <a href="https://doi.org/10.1016/j.visinf.2022.10.002" target="_blank">https://doi.org/10.1016/j.visinf.2022.10.002</a>
dc.identifier.otherCONVID_160508771
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84202
dc.description.abstractTemporal Blind Source Separation (TBSS) is used to obtain the true underlying processes from noisy temporal multivariate data, such as electrocardiograms. TBSS has similarities to Principal Component Analysis (PCA) as it separates the input data into univariate components and is applicable to suitable datasets from various domains, such as medicine, finance, or civil engineering. Despite TBSS’s broad applicability, the involved tasks are not well supported in current tools, which offer only text-based interactions and single static images. Analysts are limited in analyzing and comparing obtained results, which consist of diverse data such as matrices and sets of time series. Additionally, parameter settings have a big impact on separation performance, but as a consequence of improper tooling, analysts currently do not consider the whole parameter space. We propose to solve these problems by applying visual analytics (VA) principles. Our primary contribution is a design study for TBSS, which so far has not been explored by the visualization community. We developed a task abstraction and visualization design in a user-centered design process. Task-specific assembling of well-established visualization techniques and algorithms to gain insights in the TBSS processes is our secondary contribution. We present TBSSvis, an interactive web-based VA prototype, which we evaluated extensively in two interviews with five TBSS experts. Feedback and observations from these interviews show that TBSSvis supports the actual workflow and combination of interactive visualizations that facilitate the tasks involved in analyzing TBSS results.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherZhejiang University Press; Elsevier
dc.relation.ispartofseriesVisual Informatics
dc.rightsCC BY 4.0
dc.subject.otherblind source separation
dc.subject.otherensemble visualization
dc.subject.othervisual analytics
dc.subject.otherparameter space exploration
dc.titleTBSSvis : Visual analytics for Temporal Blind Source Separation
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202212025468
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange51-66
dc.relation.issn2468-502X
dc.relation.numberinseries4
dc.relation.volume6
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 The Authors. Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University Press Co. Ltd.
dc.rights.accesslevelopenAccessfi
dc.subject.ysosignaalinkäsittely
dc.subject.ysoaikasarjat
dc.subject.ysoaikasarja-analyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
jyx.subject.urihttp://www.yso.fi/onto/yso/p12290
jyx.subject.urihttp://www.yso.fi/onto/yso/p22747
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.visinf.2022.10.002
jyx.fundinginformationThis work was supported by the Austrian Science Fund (FWF) under grant P31881-N32.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0