Signal dimension estimation in BSS models with serial dependence
Nordhausen, K., Taskinen, S., & Virta, J. (2022). Signal dimension estimation in BSS models with serial dependence. In ICECCME 2022 : Proceedings of the 2nd International Conference on Electrical, Computer, Communications and Mechatronics Engineering. IEEE. https://doi.org/10.1109/ICECCME55909.2022.9988152
Päivämäärä
2022Tekijänoikeudet
© 2022 IEEE
Many modern multivariate time series datasets contain a large amount of noise, and the first step of the data analysis is to separate the noise channels from the signals of interest. A crucial part of this dimension reduction is determining the number of signals. In this paper we approach this problem by considering a noisy latent variable time series model which comprises many popular blind source separation models. We propose a general framework for the estimation of the signal dimension that is based on testing for sub-sphericity and give examples of different tests suitable for time series settings. In the inference we rely on bootstrap null distributions. Several simulation studies are used to demonstrate the performances of the tests in different time series settings.
Julkaisija
IEEEEmojulkaisun ISBN
978-1-6654-7096-4Konferenssi
International Conference on Electrical, Computer, Communications and Mechatronics EngineeringKuuluu julkaisuun
ICECCME 2022 : Proceedings of the 2nd International Conference on Electrical, Computer, Communications and Mechatronics EngineeringAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/164329489
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The work of KN was supported by Austrian Science Fund (FWF) Grant P31881-N32. The work of JV was supported by Academy of Finland, Grant 335077.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Dimension Reduction for Time Series in a Blind Source Separation Context Using R
Nordhausen, Klaus; Matilainen, Markus; Miettinen, Jari; Virta, Joni; Taskinen, Sara (Foundation for Open Access Statistic, 2021)Multivariate time series observations are increasingly common in multiple fields of science but the complex dependencies of such data often translate into intractable models with large number of parameters. An alternative ... -
A review of second‐order blind identification methods
Pan, Yan; Matilainen, Markus; Taskinen, Sara; Nordhausen, Klaus (John Wiley & Sons, 2022)Second order source separation (SOS) is a data analysis tool which can be used for revealing hidden structures in multivariate time series data or as a tool for dimension reduction. Such methods are nowadays increasingly ... -
TBSSvis : Visual analytics for Temporal Blind Source Separation
Piccolotto, Nikolaus; Bögl, Markus; Gschwandtner, Theresia; Muehlmann, Christoph; Nordhausen, Klaus; Filzmoser, Peter; Miksch, Silvia (Zhejiang University Press; Elsevier, 2022)Temporal Blind Source Separation (TBSS) is used to obtain the true underlying processes from noisy temporal multivariate data, such as electrocardiograms. TBSS has similarities to Principal Component Analysis (PCA) as it ... -
Blind recovery of sources for multivariate space-time random fields
Muehlmann, C.; De Iaco, S.; Nordhausen, K. (Springer Science and Business Media LLC, 2023)With advances in modern worlds technology, huge datasets that show dependencies in space as well as in time occur frequently in practice. As an example, several monitoring stations at different geographical locations track ... -
Myyräkuumeen ja myyrärunsauden välisen suhteen mallintaminen tila-avaruusmalleilla
Leppänen, Olli (2016)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.