Blind recovery of sources for multivariate space-time random fields
Muehlmann, C., De Iaco, S., & Nordhausen, K. (2023). Blind recovery of sources for multivariate space-time random fields. Stochastic Environmental Research and Risk Assessment, 37(4), 1593-1613. https://doi.org/10.1007/s00477-022-02348-2
Julkaistu sarjassa
Stochastic Environmental Research and Risk AssessmentPäivämäärä
2023Tekijänoikeudet
© The Author(s) 2022
With advances in modern worlds technology, huge datasets that show dependencies in space as well as in time occur frequently in practice. As an example, several monitoring stations at different geographical locations track hourly concentration measurements of a number of air pollutants for several years. Such a dataset contains thousands of multivariate observations, thus, proper statistical analysis needs to account for dependencies in space and time between and among the different monitored variables. To simplify the consequent multivariate spatio-temporal statistical analysis it might be of interest to detect linear transformations of the original observations that result in straightforward interpretative, spatio-temporally uncorrelated processes that are also highly likely to have a real physical meaning. Blind source separation (BSS) represents a statistical methodology which has the aim to recover so-called latent processes, that exactly meet the former requirements. BSS was already successfully used in sole temporal and sole spatial applications with great success, but, it was not yet introduced for the spatio-temporal case. In this contribution, a reasonable and innovative generalization of BSS for multivariate space-time random fields (stBSS), under second-order stationarity, is proposed, together with two space-time extensions of the well-known algorithms for multiple unknown signals extraction (stAMUSE) and the second-order blind identification (stSOBI) which solve the formulated problem. Furthermore, symmetry and separability properties of the model are elaborated and connections to the space-time linear model of coregionalization and to the classical principal component analysis are drawn. Finally, the usefulness of the new methods is shown in a thorough simulation study and on a real environmental application.
...
Julkaisija
Springer Science and Business Media LLCISSN Hae Julkaisufoorumista
1436-3240Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/172575739
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open access funding provided by Austrian Science Fund (FWF). The work of CM and KN was supported by the Austrian Science Fund P31881-N32.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A review of second‐order blind identification methods
Pan, Yan; Matilainen, Markus; Taskinen, Sara; Nordhausen, Klaus (John Wiley & Sons, 2022)Second order source separation (SOS) is a data analysis tool which can be used for revealing hidden structures in multivariate time series data or as a tool for dimension reduction. Such methods are nowadays increasingly ... -
TBSSvis : Visual analytics for Temporal Blind Source Separation
Piccolotto, Nikolaus; Bögl, Markus; Gschwandtner, Theresia; Muehlmann, Christoph; Nordhausen, Klaus; Filzmoser, Peter; Miksch, Silvia (Zhejiang University Press; Elsevier, 2022)Temporal Blind Source Separation (TBSS) is used to obtain the true underlying processes from noisy temporal multivariate data, such as electrocardiograms. TBSS has similarities to Principal Component Analysis (PCA) as it ... -
Dimension Reduction for Time Series in a Blind Source Separation Context Using R
Nordhausen, Klaus; Matilainen, Markus; Miettinen, Jari; Virta, Joni; Taskinen, Sara (Foundation for Open Access Statistic, 2021)Multivariate time series observations are increasingly common in multiple fields of science but the complex dependencies of such data often translate into intractable models with large number of parameters. An alternative ... -
Signal dimension estimation in BSS models with serial dependence
Nordhausen, Klaus; Taskinen, Sara; Virta, Joni (IEEE, 2022)Many modern multivariate time series datasets contain a large amount of noise, and the first step of the data analysis is to separate the noise channels from the signals of interest. A crucial part of this dimension reduction ... -
Spatial Blind Source Separation in the Presence of a Drift
Muehlmann, Christoph; Filzmoser, Peter; Nordhausen, Klaus (Austrian Statistical Society, 2024)Multivariate measurements taken at different spatial locations occur frequently in practice. Proper analysis of such data needs to consider not only dependencies on-sight but also dependencies in and in-between variables ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.